On Topological Changes in the Delaunay Triangulation of Moving Points

被引:0
|
作者
Natan Rubin
机构
[1] Freie Universität Berlin,Department of Mathematics and Computer Science
来源
关键词
Delaunay triangulation; Moving points; Discrete changes; Voronoi diagram; Combinatorial complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Let P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} be a collection of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} points moving along pseudo-algebraic trajectories in the plane. (So, in particular, there are constants s,c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s,c>0$$\end{document} such that any four points are co-circular at most s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} times, and any three points are collinear at most c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} times.) One of the hardest open problems in combinatorial and computational geometry is to obtain a nearly quadratic upper bound, or at least a sub-cubic bound, on the maximum number of discrete changes that the Delaunay triangulation DT(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{DT}}(P)$$\end{document} of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} experiences during the motion of the points of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document}. In this paper, we obtain an upper bound of O(n2+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2+{\varepsilon }})$$\end{document}, for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon }>0$$\end{document}, under the assumptions that (i) any four points can be co-circular at most twice and (ii) either no triple of points can be collinear more than twice or no ordered triple of points can be collinear more than once.
引用
收藏
页码:710 / 746
页数:36
相关论文
共 50 条
  • [1] On Topological Changes in the Delaunay Triangulation of Moving Points
    Rubin, Natan
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (04) : 710 - 746
  • [2] Fast Updating of Delaunay Triangulation of Moving Points by Bi-cell Filtering
    Zhou, Yuanfeng
    Sun, Feng
    Wang, Wenping
    Wang, Jiaye
    Zhang, Caiming
    [J]. COMPUTER GRAPHICS FORUM, 2010, 29 (07) : 2233 - 2242
  • [3] Algorithm to locate points in a Delaunay triangulation
    Zhao, Hui
    Bikdash, Marwan
    [J]. Proceedings of the Thirty-Eighth Southeastern Symposium on System Theory, 2004, : 211 - 215
  • [4] A new algorithm for fast updating Delaunay triangulation of moving points based on local fixing
    Zhou, Yuanfeng
    Sun, Feng
    Wang, Wenping
    Wang, Jiaye
    Zhang, Caiming
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2011, 23 (12): : 2006 - 2012
  • [5] A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron
    Amenta, Nina
    Attali, Dominique
    Devillers, Olivier
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (01) : 19 - 38
  • [6] Method for constrained delaunay triangulation of scattered points
    Li, Jiang-xiong
    [J]. Jixie Kexue Yu Jishu/Mechanical Science and Technology, 2000, 19 (02): : 241 - 243
  • [7] Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces
    Dominique Attali
    Jean-Daniel Boissonnat
    [J]. Discrete & Computational Geometry, 2003, 30 : 437 - 452
  • [8] A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron
    Nina Amenta
    Dominique Attali
    Olivier Devillers
    [J]. Discrete & Computational Geometry, 2012, 48 : 19 - 38
  • [9] Complexity of the Delaunay triangulation of points on polyhedral surfaces
    Attali, D
    Boissonnat, JD
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (03) : 437 - 452
  • [10] Delaunay Triangulation of Imprecise Points Simplified and Extended
    Buchin, Kevin
    Loffler, Maarten
    Morin, Pat
    Mulzer, Wolfgang
    [J]. ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 131 - +