Delaunay Triangulation of Imprecise Points Simplified and Extended

被引:0
|
作者
Buchin, Kevin [1 ]
Loffler, Maarten [2 ]
Morin, Pat [3 ]
Mulzer, Wolfgang [4 ]
机构
[1] TU Eindhoven, Dep Math & Comp Sci, Eindhoven, Netherlands
[2] Univ Utrecht, Dept Informat & Comp Sci, NL-3508 TC Utrecht, Netherlands
[3] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
[4] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
LINEAR-TIME; SCENES; SETS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Suppose we want to compute the Delaunay triangulation of a set P whose points are restricted to a collection R of input regions known in advance. Building on recent work by Loffler and Snoeyink [21], we show how to leverage our knowledge of R for faster Delaunay computation. Our approach needs no fancy machinery and optimally handles a wide variety of inputs, eg, overlapping disks of different sizes and fat regions.
引用
收藏
页码:131 / +
页数:3
相关论文
共 50 条
  • [1] Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended
    Kevin Buchin
    Maarten Löffler
    Pat Morin
    Wolfgang Mulzer
    [J]. Algorithmica, 2011, 61 : 674 - 693
  • [2] Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended
    Buchin, Kevin
    Loeffler, Maarten
    Morin, Pat
    Mulzer, Wolfgang
    [J]. ALGORITHMICA, 2011, 61 (03) : 674 - 693
  • [3] Delaunay triangulation of imprecise points in linear time after preprocessing
    Loffler, Maarten
    Snoeyink, Jack
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (03): : 234 - 242
  • [4] DELAUNAY TRIANGULATION OF IMPRECISE POINTS: PREPROCESS AND ACTUALLY GET A FAST QUERY TIME
    Devillers, Olivier
    [J]. JOURNAL OF COMPUTATIONAL GEOMETRY, 2011, 2 (01) : 30 - 45
  • [5] Algorithm to locate points in a Delaunay triangulation
    Zhao, Hui
    Bikdash, Marwan
    [J]. Proceedings of the Thirty-Eighth Southeastern Symposium on System Theory, 2004, : 211 - 215
  • [6] A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron
    Amenta, Nina
    Attali, Dominique
    Devillers, Olivier
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (01) : 19 - 38
  • [7] On Topological Changes in the Delaunay Triangulation of Moving Points
    Rubin, Natan
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (04) : 710 - 746
  • [8] Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces
    Dominique Attali
    Jean-Daniel Boissonnat
    [J]. Discrete & Computational Geometry, 2003, 30 : 437 - 452
  • [9] A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron
    Nina Amenta
    Dominique Attali
    Olivier Devillers
    [J]. Discrete & Computational Geometry, 2012, 48 : 19 - 38
  • [10] Complexity of the Delaunay triangulation of points on polyhedral surfaces
    Attali, D
    Boissonnat, JD
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (03) : 437 - 452