Delaunay triangulation of imprecise points in linear time after preprocessing

被引:28
|
作者
Loffler, Maarten [1 ]
Snoeyink, Jack [2 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, NL-3584 CH Utrecht, Netherlands
[2] UNC Comp Sci, Chapel Hill, NC 27599 USA
来源
关键词
Data imprecision; Delaunay triangulation; Minimum spanning tree; VORONOI DIAGRAM; ALGORITHMS;
D O I
10.1016/j.comgeo.2008.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An assumption of nearly all algorithms in computational geometry is that the input points are given precisely, so it is interesting to ask what is the value of imprecise information about points. We show how to preprocess a set of n disjoint unit disks in the plane in O (n log n) time so that if one point per disk is specified with precise coordinates, the Delaunay triangulation can be computed in linear time. From the Delaunay, one can obtain the Gabriel graph and a Euclidean minimum spanning tree; it is interesting to note the roles that these two structures play in our algorithm to quickly compute the Delaunay. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:234 / 242
页数:9
相关论文
共 50 条
  • [1] Delaunay Triangulations of Imprecise Points in Linear Time after Preprocessing
    Loffler, Maarten
    Snoeyink, Jack
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 298 - 304
  • [2] Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended
    Kevin Buchin
    Maarten Löffler
    Pat Morin
    Wolfgang Mulzer
    [J]. Algorithmica, 2011, 61 : 674 - 693
  • [3] Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended
    Buchin, Kevin
    Loeffler, Maarten
    Morin, Pat
    Mulzer, Wolfgang
    [J]. ALGORITHMICA, 2011, 61 (03) : 674 - 693
  • [4] Delaunay Triangulation of Imprecise Points Simplified and Extended
    Buchin, Kevin
    Loffler, Maarten
    Morin, Pat
    Mulzer, Wolfgang
    [J]. ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 131 - +
  • [5] DELAUNAY TRIANGULATION OF IMPRECISE POINTS: PREPROCESS AND ACTUALLY GET A FAST QUERY TIME
    Devillers, Olivier
    [J]. JOURNAL OF COMPUTATIONAL GEOMETRY, 2011, 2 (01) : 30 - 45
  • [6] Splitting a Delaunay Triangulation in Linear Time
    [J]. Algorithmica, 2002, 34 : 39 - 46
  • [7] Splitting a Delaunay triangulation in linear time
    Chazelle, B
    Devillers, O
    Hurtado, F
    Mora, M
    Sacristán, V
    Teillaud, M
    [J]. ALGORITHMICA, 2002, 34 (01) : 39 - 46
  • [8] DELAUNAY TRIANGULATION AND THE CONVEX-HULL OF N-POINTS IN EXPECTED LINEAR TIME
    MAUS, A
    [J]. BIT NUMERICAL MATHEMATICS, 1984, 24 (02) : 151 - 163
  • [9] A Linear Bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces
    Dominique Attali
    Jean-Daniel Boissonnat
    [J]. Discrete & Computational Geometry, 2004, 31 : 369 - 384
  • [10] A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces
    Attali, D
    Boissonnat, JD
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (03) : 369 - 384