A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron

被引:1
|
作者
Amenta, Nina [1 ]
Attali, Dominique [2 ]
Devillers, Olivier [3 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] CNRS, Gipsa Lab, UMR 5216, F-38402 Grenoble, France
[3] INRIA Sophia Antipolis Mediterranee, F-06902 Sophia Antipolis, France
基金
美国国家科学基金会;
关键词
Delaunay triangulation; Complexity; Upper bound; High dimension; Polyhedron; Annular medial axis; Sampling; COMPLEXITY;
D O I
10.1007/s00454-012-9415-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the Delaunay triangulation of a set of points distributed nearly uniformly on a -dimensional polyhedron (not necessarily convex) in -dimensional Euclidean space is , where . This bound is tight in the worst case and improves on the prior upper bound for most values of .
引用
收藏
页码:19 / 38
页数:20
相关论文
共 50 条