On Topological Changes in the Delaunay Triangulation of Moving Points

被引:0
|
作者
Natan Rubin
机构
[1] Freie Universität Berlin,Department of Mathematics and Computer Science
来源
关键词
Delaunay triangulation; Moving points; Discrete changes; Voronoi diagram; Combinatorial complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Let P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} be a collection of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} points moving along pseudo-algebraic trajectories in the plane. (So, in particular, there are constants s,c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s,c>0$$\end{document} such that any four points are co-circular at most s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} times, and any three points are collinear at most c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} times.) One of the hardest open problems in combinatorial and computational geometry is to obtain a nearly quadratic upper bound, or at least a sub-cubic bound, on the maximum number of discrete changes that the Delaunay triangulation DT(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{DT}}(P)$$\end{document} of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document} experiences during the motion of the points of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P$$\end{document}. In this paper, we obtain an upper bound of O(n2+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2+{\varepsilon }})$$\end{document}, for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon }>0$$\end{document}, under the assumptions that (i) any four points can be co-circular at most twice and (ii) either no triple of points can be collinear more than twice or no ordered triple of points can be collinear more than once.
引用
收藏
页码:710 / 746
页数:36
相关论文
共 50 条
  • [41] Constrained Delaunay triangulation using Delaunay visibility
    Yang, Yi-Jun
    Zhang, Hui
    Yong, Jun-Hai
    Zeng, Wei
    Paul, Jean-Claude
    Sun, Jiaguang
    [J]. ADVANCES IN VISUAL COMPUTING, PT 1, 2006, 4291 : 682 - 691
  • [42] ParaStream: A parallel streaming Delaunay triangulation algorithm for LiDAR points on multicore architectures
    Wu, Huayi
    Guan, Xuefeng
    Gong, Jianya
    [J]. COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1355 - 1363
  • [43] The employment of regular triangulation for constrained Delaunay triangulation
    Maur, P
    Kolingerová, I
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 198 - 206
  • [44] Local properties of the random Delaunay triangulation model and topological models of 2 D gravity
    Charbonnier, Severin
    David, Francois
    Eynard, Bertrand
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2019, 6 (03): : 313 - 355
  • [45] A calculating model and application of topological spatial relations based on delaunay triangulation region algebra
    Li, Jiatian
    Wang, Chunxiao
    Yang, Dehong
    Wu, Xuequn
    [J]. Journal of Computational Information Systems, 2008, 4 (05): : 2145 - 2151
  • [46] Improved Routing on the Delaunay Triangulation
    Bonichon, Nicolas
    Bose, Prosenjit
    De Carufel, Jean-Lou
    Despre, Vincent
    Hill, Darryl
    Smid, Michiel
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (03) : 495 - 549
  • [47] Delaunay triangulation and Riemannian metric
    Borouchaki, H.
    George, P. L.
    [J]. 1996, (323):
  • [48] Optimistic parallel Delaunay triangulation
    Ivana Kolingerová
    Josef Kohout
    [J]. The Visual Computer, 2002, 18 : 511 - 529
  • [49] THE EXPECTED EXTREMES IN A DELAUNAY TRIANGULATION
    BERN, M
    EPPSTEIN, D
    YAO, F
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 674 - 685
  • [50] A weak characterisation of the Delaunay triangulation
    Vin de Silva
    [J]. Geometriae Dedicata, 2008, 135 : 39 - 64