A weak characterisation of the Delaunay triangulation

被引:0
|
作者
Vin de Silva
机构
[1] Pomona College,Department of Mathematics
来源
Geometriae Dedicata | 2008年 / 135卷
关键词
Delaunay triangulation; Voronoi diagram; Laguerre diagram; Witness complex; Manifold reconstruction; Topological approximation; 52-02;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a new construction, the weak Delaunay triangulation of a finite point set in a metric space, which contains as a subcomplex the traditional (strong) Delaunay triangulation. The two simplicial complexes turn out to be equal for point sets in Euclidean space, as well as in the (hemi)sphere, hyperbolic space, and certain other geometries. There are weighted and approximate versions of the weak and strong complexes in all these geometries, and we prove equality theorems in those cases also. On the other hand, for discrete metric spaces the weak and strong complexes are decidedly different. We give a short empirical demonstration that weak Delaunay complexes can lead to dramatically clean results in the problem of estimating the homology groups of a manifold represented by a finite point sample.
引用
收藏
页码:39 / 64
页数:25
相关论文
共 50 条
  • [1] A weak characterisation of the Delaunay triangulation
    de Silva, Vin
    [J]. GEOMETRIAE DEDICATA, 2008, 135 (01) : 39 - 64
  • [2] Characterisation and generalisation of cartographic lines using Delaunay triangulation
    van der Poorten, PM
    Jones, CB
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2002, 16 (08) : 773 - 794
  • [3] Delaunay Triangulation and Tores Triangulation
    Grigis, Alain
    [J]. GEOMETRIAE DEDICATA, 2009, 143 (01) : 81 - 88
  • [4] Delaunay triangulation benchmarks
    Spelic, Denis
    Novak, Franc
    Zalik, Borut
    [J]. JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2008, 59 (01): : 49 - 52
  • [5] Delaunay triangulation of surfaces
    Kucwaj, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 487 - 488
  • [6] PARALLELIZATION OF THE DELAUNAY TRIANGULATION
    Krybus, D.
    Patzak, B.
    [J]. ENGINEERING MECHANICS 2011, 2011, : 331 - 334
  • [7] Delaunay Triangulation of Manifolds
    Boissonnat, Jean-Daniel
    Dyer, Ramsay
    Ghosh, Arijit
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (02) : 399 - 431
  • [8] Delaunay Triangulation of Manifolds
    Jean-Daniel Boissonnat
    Ramsay Dyer
    Arijit Ghosh
    [J]. Foundations of Computational Mathematics, 2018, 18 : 399 - 431
  • [9] Hexagonal Delaunay Triangulation
    Sussner, Gerd
    Greiner, Guenther
    [J]. PROCEEDINGS OF THE 18TH INTERNATIONAL MESHING ROUNDTABLE, 2009, : 519 - +
  • [10] Constrained Delaunay triangulation using Delaunay visibility
    Yang, Yi-Jun
    Zhang, Hui
    Yong, Jun-Hai
    Zeng, Wei
    Paul, Jean-Claude
    Sun, Jiaguang
    [J]. ADVANCES IN VISUAL COMPUTING, PT 1, 2006, 4291 : 682 - 691