In this paper, we consider the estimation problem of individual weights of three objects. For the estimation we use the chemical balance weighing design and the criterion of D-optimality. We assume that the error terms \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varepsilon_{i},\ i=1,2,\dots,n,}$$\end{document} are a first-order autoregressive process. This assumption implies that the covariance matrix of errors depends on the known parameter ρ. We present the chemical balance weighing design matrix \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widetilde{\bf X}}$$\end{document} and we prove that this design is D-optimal in certain classes of designs for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rho\in[0,1)}$$\end{document} and it is also D-optimal in the class of designs with the design matrix \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf X} \in M_{n\times 3}(\pm 1)}$$\end{document} for some ρ ≥ 0. We prove also the necessary and sufficient conditions under which the design is D-optimal in the class of designs \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M_{n\times 3}(\pm 1)}$$\end{document} , if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rho\in[0,1/(n-2))}$$\end{document} . We present also the matrix of the D-optimal factorial design with 3 two-level factors.