D-optimal chemical balance weighing designs with autoregressive errors

被引:0
|
作者
Krystyna Katulska
Łukasz Smaga
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
来源
Metrika | 2013年 / 76卷
关键词
Autoregressive process; D-optimal chemical balance weighing design; Factorial design; Fischer’s inequality; Hadamard’s inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the estimation problem of individual weights of three objects. For the estimation we use the chemical balance weighing design and the criterion of D-optimality. We assume that the error terms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon_{i},\ i=1,2,\dots,n,}$$\end{document} are a first-order autoregressive process. This assumption implies that the covariance matrix of errors depends on the known parameter ρ. We present the chemical balance weighing design matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{\bf X}}$$\end{document} and we prove that this design is D-optimal in certain classes of designs for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\in[0,1)}$$\end{document} and it is also D-optimal in the class of designs with the design matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf X} \in M_{n\times 3}(\pm 1)}$$\end{document} for some ρ ≥ 0. We prove also the necessary and sufficient conditions under which the design is D-optimal in the class of designs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{n\times 3}(\pm 1)}$$\end{document} , if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\in[0,1/(n-2))}$$\end{document} . We present also the matrix of the D-optimal factorial design with 3 two-level factors.
引用
收藏
页码:393 / 407
页数:14
相关论文
共 50 条
  • [41] NOTES ON THE REGULAR E-OPTIMAL SPRING BALANCE WEIGHING DESIGNS WITH CORRELATED ERRORS
    Ceranka, Bronislaw
    Graczyk, Malgorzata
    REVSTAT-STATISTICAL JOURNAL, 2015, 13 (02) : 119 - 129
  • [42] D-optimal and nearly D-optimal exact designs for binary response on the ball
    Martin Radloff
    Rainer Schwabe
    Statistical Papers, 2023, 64 : 1021 - 1040
  • [43] Optimal designs for regression models with autoregressive errors
    Dette, Holger
    Pepelyshev, Andrey
    Zhigljaysky, Anatoly
    STATISTICS & PROBABILITY LETTERS, 2016, 116 : 107 - 115
  • [44] ON D-OPTIMAL ROBUST FIRST ORDER DESIGNS WITH TRI-DIAGONAL ERRORS
    Das, Rabindra Nath
    Park, Sung H.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2008, 9 (01) : 37 - 51
  • [45] D-optimal and nearly D-optimal exact designs for binary response on the ball
    Radloff, Martin
    Schwabe, Rainer
    STATISTICAL PAPERS, 2023, 64 (04) : 1021 - 1040
  • [46] ON D-OPTIMAL DESIGNS FOR BINARY DATA
    KHAN, MK
    YAZDI, AA
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1988, 18 (01) : 83 - 91
  • [47] D-optimal designs for covariate models
    Dey, Aloke
    Mukerjee, Rahul
    STATISTICS, 2006, 40 (04) : 297 - 305
  • [48] Recent developments in D-optimal designs
    Ceranka, B.
    Graczyk, M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (06) : 1470 - 1480
  • [49] D-Optimal Designs for Covariate Models
    Dutta, Ganesh
    Das, Premadhis
    Mandal, Nripes K.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (01) : 165 - 174
  • [50] D-OPTIMAL DESIGNS WITH HADAMARD MATRIX
    CHOW, KL
    LII, KS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (01) : 76 - 90