D-optimal chemical balance weighing designs with autoregressive errors

被引:0
|
作者
Krystyna Katulska
Łukasz Smaga
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
来源
Metrika | 2013年 / 76卷
关键词
Autoregressive process; D-optimal chemical balance weighing design; Factorial design; Fischer’s inequality; Hadamard’s inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the estimation problem of individual weights of three objects. For the estimation we use the chemical balance weighing design and the criterion of D-optimality. We assume that the error terms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon_{i},\ i=1,2,\dots,n,}$$\end{document} are a first-order autoregressive process. This assumption implies that the covariance matrix of errors depends on the known parameter ρ. We present the chemical balance weighing design matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{\bf X}}$$\end{document} and we prove that this design is D-optimal in certain classes of designs for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\in[0,1)}$$\end{document} and it is also D-optimal in the class of designs with the design matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf X} \in M_{n\times 3}(\pm 1)}$$\end{document} for some ρ ≥ 0. We prove also the necessary and sufficient conditions under which the design is D-optimal in the class of designs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{n\times 3}(\pm 1)}$$\end{document} , if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho\in[0,1/(n-2))}$$\end{document} . We present also the matrix of the D-optimal factorial design with 3 two-level factors.
引用
收藏
页码:393 / 407
页数:14
相关论文
共 50 条
  • [21] D-optimal designs
    deAguiar, PF
    Bourguignon, B
    Khots, MS
    Massart, DL
    PhanThanLuu, R
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 30 (02) : 199 - 210
  • [22] D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors
    Liu, Xin
    Yue, Rong-Xian
    Chatterjee, Kashinath
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (04) : 669 - 679
  • [23] D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors
    Xin Liu
    Rong-Xian Yue
    Kashinath Chatterjee
    Communications in Mathematics and Statistics, 2022, 10 : 669 - 679
  • [24] A-optimal chemical balance weighing design with correlated errors
    Ceranka B.
    Graczyk M.
    Journal of Applied Mathematics and Computing, 2004, 16 (1-2) : 143 - 150
  • [25] D-optimal weighing designs with circular string property under SLS estimation
    Al-Sudani, Abrar Z.
    M'Hallah, Rym
    Huda, Shahariar
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [26] Regular E-Optimal Spring Balance Weighing Designs with Correlated Errors
    Ceranka, Bronislaw
    Graczyk, Malgorzata
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (05) : 947 - 953
  • [27] Robustness of Optimal Chemical Balance Weighing Designs for Estimation of Total Weight
    Ceranka, Bronislaw
    Graczyk, Malgorzata
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (13-14) : 2297 - 2304
  • [28] Notes on D-optimal designs
    Neubauer, MG
    Watkins, W
    Zeitlin, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 280 (2-3) : 109 - 127
  • [29] Almost D-optimal designs
    Cohn, JHE
    UTILITAS MATHEMATICA, 2000, 57 : 121 - 128
  • [30] Complex D-optimal designs
    Cohn, JHE
    DISCRETE MATHEMATICS, 1996, 156 (1-3) : 237 - 241