Semiclassical Measures for Higher-Dimensional Quantum Cat Maps

被引:0
|
作者
Semyon Dyatlov
Malo Jézéquel
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Annales Henri Poincaré | 2024年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Consider a quantum cat map M associated with a matrix A∈Sp(2n,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in {{\,\textrm{Sp}\,}}(2n,{\mathbb {Z}})$$\end{document}, which is a common toy model in quantum chaos. We show that the mass of eigenfunctions of M on any nonempty open set in the position–frequency space satisfies a lower bound which is uniform in the semiclassical limit, under two assumptions: (1) there is a unique simple eigenvalue of A of largest absolute value and (2) the characteristic polynomial of A is irreducible over the rationals. This is similar to previous work (Dyatlov and Jin in Acta Math 220(2):297–339, 2018; Dyatlov et al. in J Am Math Soc 35(2):361–465, 2022) on negatively curved surfaces and (Schwartz in The full delocalization of eigenstates for the quantized cat map, 2021) on quantum cat maps with n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, but this paper gives the first results of this type which apply in any dimension. When condition (2) fails we provide a weaker version of the result and discuss relations to existing counterexamples. We also obtain corresponding statements regarding semiclassical measures and damped quantum cat maps.
引用
收藏
页码:1545 / 1605
页数:60
相关论文
共 50 条
  • [41] Quantum Transport through Partial Barriers in Higher-Dimensional Systems
    Stoeber, Jonas
    Baecker, Arnd
    Ketzmerick, Roland
    PHYSICAL REVIEW LETTERS, 2024, 132 (04)
  • [42] Consciousness and Perception in Higher-Dimensional Quantum Space-time
    Carter, Philip J.
    NEUROQUANTOLOGY, 2014, 12 (01) : 46 - 75
  • [43] Simplifying quantum logic using higher-dimensional Hilbert spaces
    Lanyon, Benjamin P.
    Barbieri, Marco
    Almeida, Marcelo P.
    Jennewein, Thomas
    Ralph, Timothy C.
    Resch, Kevin J.
    Pryde, Geoff J.
    O'Brien, Jeremy L.
    Gilchrist, Alexei
    White, Andrew G.
    NATURE PHYSICS, 2009, 5 (02) : 134 - 140
  • [44] Fault-tolerant quantum computation with higher-dimensional systems
    Gottesman, Daniel
    Chaos, solitons and fractals, 1999, 10 (10): : 1749 - 1758
  • [46] Stationary amplitudes of quantum walks on the higher-dimensional integer lattice
    Komatsu, Takashi
    Konno, Norio
    QUANTUM INFORMATION PROCESSING, 2017, 16 (12)
  • [47] Fermionization transform for certain higher-dimensional quantum spin models
    Galitski, Victor
    PHYSICAL REVIEW B, 2010, 82 (06)
  • [49] Fault-tolerant quantum computation with higher-dimensional systems
    Gottesman, D
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 302 - 313
  • [50] Stationary amplitudes of quantum walks on the higher-dimensional integer lattice
    Takashi Komatsu
    Norio Konno
    Quantum Information Processing, 2017, 16