Semiclassical Measures for Higher-Dimensional Quantum Cat Maps

被引:0
|
作者
Semyon Dyatlov
Malo Jézéquel
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Annales Henri Poincaré | 2024年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Consider a quantum cat map M associated with a matrix A∈Sp(2n,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in {{\,\textrm{Sp}\,}}(2n,{\mathbb {Z}})$$\end{document}, which is a common toy model in quantum chaos. We show that the mass of eigenfunctions of M on any nonempty open set in the position–frequency space satisfies a lower bound which is uniform in the semiclassical limit, under two assumptions: (1) there is a unique simple eigenvalue of A of largest absolute value and (2) the characteristic polynomial of A is irreducible over the rationals. This is similar to previous work (Dyatlov and Jin in Acta Math 220(2):297–339, 2018; Dyatlov et al. in J Am Math Soc 35(2):361–465, 2022) on negatively curved surfaces and (Schwartz in The full delocalization of eigenstates for the quantized cat map, 2021) on quantum cat maps with n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, but this paper gives the first results of this type which apply in any dimension. When condition (2) fails we provide a weaker version of the result and discuss relations to existing counterexamples. We also obtain corresponding statements regarding semiclassical measures and damped quantum cat maps.
引用
收藏
页码:1545 / 1605
页数:60
相关论文
共 50 条
  • [21] APPROXIMATING MEASURES INVARIANT UNDER HIGHER-DIMENSIONAL CHAOTIC TRANSFORMATIONS
    BOYARSKY, A
    LOU, YS
    JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) : 231 - 244
  • [22] ON THE NUMBER OF INVARIANT-MEASURES FOR HIGHER-DIMENSIONAL CHAOTIC TRANSFORMATIONS
    GORA, P
    BOVARSKY, A
    PROPPE, H
    JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) : 709 - 728
  • [23] Generalized Quantum Measurements on a Higher-Dimensional System via Quantum Walks
    Wang, Xiaowei
    Zhan, Xiang
    Li, Yulin
    Xiao, Lei
    Zhu, Gaoyan
    Qu, Dengke
    Lin, Quan
    Yu, Yue
    Xue, Peng
    PHYSICAL REVIEW LETTERS, 2023, 131 (15)
  • [24] Fermions Tunneling from Higher-Dimensional Reissner-Nordstrom Black Hole: Semiclassical and Beyond Semiclassical Approximation
    Yang, ShuZheng
    Wen, Dan
    Lin, Kai
    ADVANCES IN HIGH ENERGY PHYSICS, 2016, 2016
  • [25] 2-DIMENSIONAL QUANTUM CHROMODYNAMICS AS THE LIMIT OF HIGHER-DIMENSIONAL THEORIES
    FERRANDO, A
    JARAMILLO, A
    PHYSICS LETTERS B, 1995, 341 (3-4) : 342 - 348
  • [26] Higher-dimensional open quantum walk in environment of quantum Bernoulli noises
    Wang, Ce
    STOCHASTICS AND DYNAMICS, 2022, 22 (01)
  • [27] Optimal higher-dimensional Dehn functions for some CAT(0) lattices
    Leuzinger, Enrico
    GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (02) : 441 - 466
  • [28] Semiclassical asymptotics of perturbed cat maps
    Boasman, P.A.
    Keating, J.P.
    Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences, 1995, 449 (1937): : 629 - 654
  • [29] SEMICLASSICAL ASYMPTOTICS OF PERTURBED CAT MAPS
    BOASMAN, PA
    KEATING, JP
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937): : 629 - 653
  • [30] Entropic Bounds on Semiclassical Measures for Quantized One-Dimensional Maps
    Boris Gutkin
    Communications in Mathematical Physics, 2010, 294 : 303 - 342