Semiclassical Measures for Higher-Dimensional Quantum Cat Maps

被引:0
|
作者
Semyon Dyatlov
Malo Jézéquel
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Annales Henri Poincaré | 2024年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Consider a quantum cat map M associated with a matrix A∈Sp(2n,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in {{\,\textrm{Sp}\,}}(2n,{\mathbb {Z}})$$\end{document}, which is a common toy model in quantum chaos. We show that the mass of eigenfunctions of M on any nonempty open set in the position–frequency space satisfies a lower bound which is uniform in the semiclassical limit, under two assumptions: (1) there is a unique simple eigenvalue of A of largest absolute value and (2) the characteristic polynomial of A is irreducible over the rationals. This is similar to previous work (Dyatlov and Jin in Acta Math 220(2):297–339, 2018; Dyatlov et al. in J Am Math Soc 35(2):361–465, 2022) on negatively curved surfaces and (Schwartz in The full delocalization of eigenstates for the quantized cat map, 2021) on quantum cat maps with n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, but this paper gives the first results of this type which apply in any dimension. When condition (2) fails we provide a weaker version of the result and discuss relations to existing counterexamples. We also obtain corresponding statements regarding semiclassical measures and damped quantum cat maps.
引用
收藏
页码:1545 / 1605
页数:60
相关论文
共 50 条