Semiclassical Measures for Higher-Dimensional Quantum Cat Maps

被引:0
|
作者
Semyon Dyatlov
Malo Jézéquel
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Annales Henri Poincaré | 2024年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Consider a quantum cat map M associated with a matrix A∈Sp(2n,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in {{\,\textrm{Sp}\,}}(2n,{\mathbb {Z}})$$\end{document}, which is a common toy model in quantum chaos. We show that the mass of eigenfunctions of M on any nonempty open set in the position–frequency space satisfies a lower bound which is uniform in the semiclassical limit, under two assumptions: (1) there is a unique simple eigenvalue of A of largest absolute value and (2) the characteristic polynomial of A is irreducible over the rationals. This is similar to previous work (Dyatlov and Jin in Acta Math 220(2):297–339, 2018; Dyatlov et al. in J Am Math Soc 35(2):361–465, 2022) on negatively curved surfaces and (Schwartz in The full delocalization of eigenstates for the quantized cat map, 2021) on quantum cat maps with n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, but this paper gives the first results of this type which apply in any dimension. When condition (2) fails we provide a weaker version of the result and discuss relations to existing counterexamples. We also obtain corresponding statements regarding semiclassical measures and damped quantum cat maps.
引用
收藏
页码:1545 / 1605
页数:60
相关论文
共 50 条
  • [1] Semiclassical Measures for Higher-Dimensional Quantum Cat Maps
    Dyatlov, Semyon
    Jezequel, Malo
    ANNALES HENRI POINCARE, 2024, 25 (02): : 1545 - 1605
  • [2] A class of higher-dimensional hyperchaotic maps
    Chen Chen
    Kehui Sun
    Shaobo He
    The European Physical Journal Plus, 134
  • [3] A class of higher-dimensional hyperchaotic maps
    Chen, Chen
    Sun, Kehui
    He, Shaobo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (08):
  • [4] Higher-dimensional subshifts of finite type, factor maps and measures of maximal entropy
    Meester, R
    Steif, JE
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 200 (02) : 497 - 510
  • [5] Higher-dimensional susy quantum mechanics
    Das, A
    Okubo, S
    Pernice, SA
    MODERN PHYSICS LETTERS A, 1997, 12 (08) : 581 - 588
  • [6] Higher-dimensional view on quantum cosmology
    Danielsson, U. H.
    Panizo, D.
    Tielemans, R.
    Van Riet, T.
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [7] Higher-dimensional Susy Quantum Mechanics
    Das, A.
    Okubo, S.
    Pernice, S. A.
    Modern Physics Letter A, 12 (08):
  • [8] The generalized Henon maps: Examples for higher-dimensional chaos
    Richter, H
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (06): : 1371 - 1384
  • [9] Recent Results on the Dynamics of Higher-dimensional Henon Maps
    Anastassiou, Stavros
    Bountis, Anastasios
    Backer, Arnd
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (02): : 161 - 177
  • [10] INFLATIONARY SOLUTIONS IN HIGHER-DIMENSIONAL QUANTUM COSMOLOGY
    CHAKRABORTY, S
    GENERAL RELATIVITY AND GRAVITATION, 1992, 24 (09) : 1001 - 1010