On a Diophantine inequality involving prime powers

被引:1
|
作者
Sanying Shi
Li Liu
机构
[1] Hefei University of Technology,School of Mathematics
[2] Nanjing University,undefined
来源
关键词
Diophantine inequality; Sieve method; Prime number; Primary 11P21; Secondary 11N36;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that N is a sufficiently large real number. In this paper it is proved that if 1 < c < 108/53, c ≠ 2, then the Diophantine inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${| p^c_1 + p^c_2+ p^c_3 +p^c_4+ p^c_5 - N| < \log^{-1}N}$$\end{document} is solvable in primes p1, p2, p3, p4, p5. This result constitutes an improvement upon that of Zhai and Cao for the range 1 < c < 81/40, c ≠ 2.
引用
收藏
页码:423 / 440
页数:17
相关论文
共 50 条
  • [1] A diophantine inequality involving prime powers
    Kumchev, A
    ACTA ARITHMETICA, 1999, 89 (04) : 311 - 330
  • [2] On a Diophantine inequality involving prime powers
    Shi, Sanying
    Liu, Li
    MONATSHEFTE FUR MATHEMATIK, 2013, 169 (3-4): : 423 - 440
  • [3] On a binary diophantine inequality involving prime powers
    Kumchev, A
    Laporta, MBS
    NUMBER THEORY FOR THE MILLENNIUM II, 2002, : 307 - 329
  • [4] On a Diophantine Inequality Involving Prime Numbers (Ⅲ)
    Yingchun Cai Department of Mathematics
    Acta Mathematica Sinica(English Series), 1999, 15 (03) : 387 - 394
  • [5] On a Diophantine inequality involving prime numbers
    Sanhua Li
    Yingchun Cai
    The Ramanujan Journal, 2020, 52 : 163 - 174
  • [6] On a Diophantine inequality involving prime numbers
    Li, Sanhua
    Cai, Yingchun
    RAMANUJAN JOURNAL, 2020, 52 (01): : 163 - 174
  • [7] On a diophantine inequality involving prime numbers (III)
    Yingchun Cai
    Acta Mathematica Sinica, 1999, 15 : 387 - 394
  • [8] On a binary Diophantine inequality involving prime numbers
    Huang, Jing
    Wang, Qian
    Zhang, Rui
    AIMS MATHEMATICS, 2024, 9 (04): : 8371 - 8385
  • [9] On a binary Diophantine inequality involving prime numbers
    Sanhua Li
    Yingchun Cai
    The Ramanujan Journal, 2021, 54 : 571 - 589
  • [10] On a binary Diophantine inequality involving prime numbers
    Li, Sanhua
    Cai, Yingchun
    RAMANUJAN JOURNAL, 2021, 54 (03): : 571 - 589