On a Diophantine inequality involving prime powers

被引:1
|
作者
Sanying Shi
Li Liu
机构
[1] Hefei University of Technology,School of Mathematics
[2] Nanjing University,undefined
来源
关键词
Diophantine inequality; Sieve method; Prime number; Primary 11P21; Secondary 11N36;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that N is a sufficiently large real number. In this paper it is proved that if 1 < c < 108/53, c ≠ 2, then the Diophantine inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${| p^c_1 + p^c_2+ p^c_3 +p^c_4+ p^c_5 - N| < \log^{-1}N}$$\end{document} is solvable in primes p1, p2, p3, p4, p5. This result constitutes an improvement upon that of Zhai and Cao for the range 1 < c < 81/40, c ≠ 2.
引用
收藏
页码:423 / 440
页数:17
相关论文
共 50 条