On a Diophantine inequality involving prime powers

被引:1
|
作者
Sanying Shi
Li Liu
机构
[1] Hefei University of Technology,School of Mathematics
[2] Nanjing University,undefined
来源
关键词
Diophantine inequality; Sieve method; Prime number; Primary 11P21; Secondary 11N36;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that N is a sufficiently large real number. In this paper it is proved that if 1 < c < 108/53, c ≠ 2, then the Diophantine inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${| p^c_1 + p^c_2+ p^c_3 +p^c_4+ p^c_5 - N| < \log^{-1}N}$$\end{document} is solvable in primes p1, p2, p3, p4, p5. This result constitutes an improvement upon that of Zhai and Cao for the range 1 < c < 81/40, c ≠ 2.
引用
收藏
页码:423 / 440
页数:17
相关论文
共 50 条
  • [41] Diophantine inequality involving binary forms
    Quanwu Mu
    Frontiers of Mathematics in China, 2017, 12 : 1457 - 1468
  • [42] Diophantine inequality involving binary forms
    Xue, Boqing
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (03) : 641 - 657
  • [43] Diophantine inequality involving binary forms
    Mu, Quanwu
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (06) : 1457 - 1468
  • [44] Diophantine inequality involving binary forms
    Boqing Xue
    Frontiers of Mathematics in China, 2014, 9 : 641 - 657
  • [45] ON SOME DIOPHANTINE PROBLEMS INVOLVING POWERS AND FACTORIALS
    BRINDZA, B
    ERDOS, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 51 : 1 - 7
  • [46] One Diophantine inequality with integer and prime variables
    Yongqiang Yang
    Weiping Li
    Journal of Inequalities and Applications, 2015
  • [47] On a Diophantine Inequality with Prime Numbers of a Special Type
    Tolev, D. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 299 (01) : 246 - 267
  • [48] On a Diophantine Inequality with Prime Numbers of a Special Type
    D. I. Tolev
    Proceedings of the Steklov Institute of Mathematics, 2017, 299 : 246 - 267
  • [49] One Diophantine inequality with integer and prime variables
    Yang, Yongqiang
    Li, Weiping
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [50] On a Diophantine equation involving powers of Fibonacci numbers
    Gueth, Krisztian
    Luca, Florian
    Szalay, Laszlo
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2020, 96 (04) : 33 - 37