On a Diophantine Inequality Involving Prime Numbers (Ⅲ)

被引:2
|
作者
Yingchun Cai Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Prime; Inequality; Exponential sum;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
摘要
Let 1<c<10/11. In the present paper it is proved that there exists a number N(c)>0such that for each real number N>N(c) the inequality |p~c+p~c+p~c-N|<N~(-(1/c)(11/10-c))logN issolvable in prime numbers p, p, p, where cis some absolute positive constant.
引用
收藏
页码:387 / 394
页数:8
相关论文
共 50 条
  • [1] On a Diophantine inequality involving prime numbers
    Sanhua Li
    Yingchun Cai
    The Ramanujan Journal, 2020, 52 : 163 - 174
  • [2] On a Diophantine inequality involving prime numbers
    Li, Sanhua
    Cai, Yingchun
    RAMANUJAN JOURNAL, 2020, 52 (01): : 163 - 174
  • [3] On a diophantine inequality involving prime numbers (III)
    Yingchun Cai
    Acta Mathematica Sinica, 1999, 15 : 387 - 394
  • [4] On a binary Diophantine inequality involving prime numbers
    Huang, Jing
    Wang, Qian
    Zhang, Rui
    AIMS MATHEMATICS, 2024, 9 (04): : 8371 - 8385
  • [5] On a binary Diophantine inequality involving prime numbers
    Sanhua Li
    Yingchun Cai
    The Ramanujan Journal, 2021, 54 : 571 - 589
  • [6] On a binary Diophantine inequality involving prime numbers
    Li, Sanhua
    Cai, Yingchun
    RAMANUJAN JOURNAL, 2021, 54 (03): : 571 - 589
  • [7] ON A DIOPHANTINE INEQUALITY INVOLVING PRIME-NUMBERS
    TOLEV, DI
    ACTA ARITHMETICA, 1992, 61 (03) : 289 - 306
  • [8] On a diophantine inequality involving prime numbers (III)
    Cai, YC
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (03): : 387 - 394
  • [9] On a Binary Diophantine Inequality Involving Prime Numbers
    M. B. S. Laporta
    Acta Mathematica Hungarica, 1999, 83 : 179 - 187
  • [10] On a binary diophantine inequality involving prime numbers
    Laporta, MBS
    ACTA MATHEMATICA HUNGARICA, 1999, 83 (03) : 179 - 187