Conic blocking sets in Desarguesian projective planes

被引:0
|
作者
Holder L.D. [1 ]
机构
[1] St. Mary's University, Department of Mathematics, San Antonio, TX 78228-8560, One Camino Santa Maria
关键词
Cones; Conic blocking sets; Flocks; Projective planes;
D O I
10.1007/s00022-004-1762-y
中图分类号
学科分类号
摘要
Define a conic blocking set to be a set of lines in a Desarguesian projective plane such that all conics meet these lines. Conic blocking sets can be used in determining if a collection of planes in projective three-space forms a flock of a quadratic cone. We discuss trivial conic blocking sets and conic blocking sets in planes of small order. We provide a construction for conic blocking sets in planes of non-prime order, and we make additional comments about the structure of these conic blocking sets in certain planes of even order. © Birkhäuser Verlag, Basel, 2004.
引用
收藏
页码:95 / 105
页数:10
相关论文
共 50 条
  • [41] Blocking structures in finite projective planes
    Aguglia, Angela
    Cossidente, Antonio
    Pavese, Francesco
    JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (07) : 356 - 366
  • [42] BLOCKING SETS OF 16 POINTS IN PROJECTIVE-PLANES OF ORDER 10 .2.
    BIERBRAUER, J
    QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (144): : 383 - 391
  • [43] BLOCKING SETS IN FINITE PLANES
    BRUEN, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 543 - &
  • [44] On blocking sets of inversive planes
    Kiss, G
    Marcugini, S
    Pambianco, F
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (04) : 268 - 275
  • [45] Blocking sets in Andre planes
    Polito, P
    Polverino, O
    GEOMETRIAE DEDICATA, 1999, 75 (02) : 199 - 207
  • [46] Blocking Sets in André Planes
    Pompeo Polito
    Olga Polverino
    Geometriae Dedicata, 1999, 75 : 199 - 207
  • [47] Blocking Sets of Certain Line Sets Related to a Conic
    Angela Aguglia
    Massimo Giulietti
    Designs, Codes and Cryptography, 2006, 39 : 397 - 405
  • [49] Blocking sets of certain line sets related to a conic
    Aguglia, A
    Giulietti, M
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (03) : 397 - 405
  • [50] Blocking and double blocking sets in finite planes
    De Beule, Jan
    Heger, Tamas
    Szonyi, Tamas
    Van de Voorde, Geertrui
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):