Conic blocking sets in Desarguesian projective planes

被引:0
|
作者
Holder L.D. [1 ]
机构
[1] St. Mary's University, Department of Mathematics, San Antonio, TX 78228-8560, One Camino Santa Maria
关键词
Cones; Conic blocking sets; Flocks; Projective planes;
D O I
10.1007/s00022-004-1762-y
中图分类号
学科分类号
摘要
Define a conic blocking set to be a set of lines in a Desarguesian projective plane such that all conics meet these lines. Conic blocking sets can be used in determining if a collection of planes in projective three-space forms a flock of a quadratic cone. We discuss trivial conic blocking sets and conic blocking sets in planes of small order. We provide a construction for conic blocking sets in planes of non-prime order, and we make additional comments about the structure of these conic blocking sets in certain planes of even order. © Birkhäuser Verlag, Basel, 2004.
引用
收藏
页码:95 / 105
页数:10
相关论文
共 50 条
  • [31] Planar Oval Sets in Desarguesian Planes of Even Order
    Nikias de Feyter
    Designs, Codes and Cryptography, 2004, 32 : 111 - 119
  • [32] Blocking set in projective planes
    Polverino, O
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A : 181 - 184
  • [33] On KM-arcs in non-Desarguesian projective planes
    Peter Vandendriessche
    Designs, Codes and Cryptography, 2019, 87 : 2129 - 2137
  • [34] Planar oval sets in Desarguesian planes of even order
    De Feyter, N
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 32 (1-3) : 111 - 119
  • [35] Dominating Sets in Projective Planes
    Heger, Tamas
    Nagy, Zoltan Lorant
    JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (07) : 293 - 309
  • [36] Small weight codewords in the codes arising from Desarguesian projective planes
    Fack, Veerle
    Fancsali, Szabolcs L.
    Storme, Leo
    Van de Voorde, Geertrui
    Winne, Joost
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 46 (01) : 25 - 43
  • [37] On defining sets for projective planes
    Boros, E
    Szonyi, T
    Tichler, K
    DISCRETE MATHEMATICS, 2005, 303 (1-3) : 17 - 31
  • [38] THE CLASSIFICATION OF COMPACT PUNCTALLY COHESIVE DESARGUESIAN PROJECTIVE KLINGENBERG-PLANES
    LORIMER, JWM
    GEOMETRIAE DEDICATA, 1990, 36 (2-3) : 347 - 358
  • [39] EQUIVALENT AND ISOMORPHIC COMPLETE 6-ARCS IN DESARGUESIAN PROJECTIVE PLANES
    MARTINOV, N
    LOZANOV, C
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1976, 29 (11): : 1583 - 1584
  • [40] Small weight codewords in the codes arising from Desarguesian projective planes
    Veerle Fack
    Szabolcs L. Fancsali
    L. Storme
    Geetrui Van de Voorde
    Joost Winne
    Designs, Codes and Cryptography, 2008, 46 : 25 - 43