On blocking sets of inversive planes

被引:2
|
作者
Kiss, G
Marcugini, S
Pambianco, F
机构
[1] Eotvos Lorand Univ, Dept Geometry, H-1117 Budapest, Hungary
[2] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
[3] Univ Perugia, Dipartimento Matemat, I-06123 Perugia, Italy
关键词
inversive planes; blocking sets; minimal blocking sets; classification;
D O I
10.1002/jcd.20037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a blocking set in an inversive plane of order q. It was shown by Bruen and Rothschild (1) that vertical bar S vertical bar >= 2q for q >= 9. We prove that if q is sufficiently large, C is a fixed natural number and vertical bar S vertical bar 2q + C, then roughly 2/3 of the circles of the plane meet S in one point and 1/3 of the circles of the plane meet S in four points. The complete classification of minimal blocking sets in inversive planes of order q <= 5 and the sizes of some examples of minimal blocking sets in planes of order q <= 37 are given. Geometric properties of some of these blocking sets are also studied. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:268 / 275
页数:8
相关论文
共 50 条
  • [1] On the cardinality of intersection sets in inversive planes
    Greferath, M
    Rössing, C
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) : 181 - 188
  • [2] Inversive planes, Minkowski planes and regular sets of points
    Rinaldi, G
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (03) : 357 - 363
  • [3] BLOCKING SETS IN FINITE PLANES
    BRUEN, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 543 - &
  • [4] Blocking sets in Andre planes
    Polito, P
    Polverino, O
    GEOMETRIAE DEDICATA, 1999, 75 (02) : 199 - 207
  • [5] Blocking sets in desarguesian planes
    Blokhuis, A
    COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 133 - 155
  • [6] Blocking Sets in André Planes
    Pompeo Polito
    Olga Polverino
    Geometriae Dedicata, 1999, 75 : 199 - 207
  • [7] Blocking and double blocking sets in finite planes
    De Beule, Jan
    Heger, Tamas
    Szonyi, Tamas
    Van de Voorde, Geertrui
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [8] On blocking sets in projective Hjelmslev planes
    Landjev, Ivan
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2007, 1 (01) : 65 - 81
  • [9] BLOCKING SETS IN FINITE PROJECTIVE PLANES
    BRUEN, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (03) : 380 - &
  • [10] On multiple blocking sets in Galois planes
    Blokhuis, A.
    Lovasz, L.
    Storme, L.
    Szdnyi, T.
    ADVANCES IN GEOMETRY, 2007, 7 (01) : 39 - 53