A Concentration Phenomenon for Semilinear Elliptic Equations

被引:0
|
作者
Nils Ackermann
Andrzej Szulkin
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
[2] Circuito Exterior,Department of Mathematics
[3] C.U.,undefined
[4] Stockholm University,undefined
关键词
Soliton; Nontrivial Solution; Dielectric Response; Kerr Nonlinearity; Ground State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
For a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^{N}}$$\end{document} we consider the equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$\end{document}with zero Dirichlet boundary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\in(2, 2^*)}$$\end{document}. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V \geqq 0}$$\end{document} and Qn are bounded functions that are positive in a region contained in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} and negative outside, and such that the sets {Qn > 0} shrink to a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_0 \in \Omega}$$\end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \to \infty}$$\end{document}. We show that if un is a nontrivial solution corresponding to Qn, then the sequence (un) concentrates at x0 with respect to the H1 and certain Lq-norms. We also show that if the sets {Qn > 0} shrink to two points and un are ground state solutions, then they concentrate at one of these points.
引用
收藏
页码:1075 / 1089
页数:14
相关论文
共 50 条
  • [41] Entire large solutions for semilinear elliptic equations
    Dupaigne, Louis
    Ghergu, Marius
    Goubet, Olivier
    Warnault, Guillaume
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) : 2224 - 2251
  • [42] On semilinear elliptic equations with borderline Hardy potentials
    Felli, Veronica
    Ferrero, Alberto
    JOURNAL D ANALYSE MATHEMATIQUE, 2014, 123 : 303 - 340
  • [43] Nontrivial solutions of elliptic semilinear equations¶at resonance
    Kanishka Perera
    Martin Schechter
    manuscripta mathematica, 2000, 101 : 301 - 311
  • [44] Semilinear Elliptic Equations with Uniform Blowup on the Boundary
    王春晴
    应用数学, 1996, (02)
  • [45] Semilinear fractional elliptic equations involving measures
    Chen, Huyuan
    Veron, Laurent
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (05) : 1457 - 1486
  • [46] Quantitative bounds for subcritical semilinear elliptic equations
    Bonforte, Matteo
    Grillo, Gabriele
    Luis Vazquezo, Juan
    RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 63 - 89
  • [47] Singular solutions of semilinear elliptic and parabolic equations
    Qi S. Zhang
    Z. Zhao
    Mathematische Annalen, 1998, 310 : 777 - 794
  • [48] Existence and multiplicity of solutions of semilinear elliptic equations
    Tang, CL
    Wu, XP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (01) : 1 - 12
  • [49] Oscillatory radial solutions of semilinear elliptic equations
    Derrick, WR
    Chen, SH
    Cima, JA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (02) : 425 - 445
  • [50] CONVEXITY OF SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS
    CAFFARELLI, LA
    FRIEDMAN, A
    DUKE MATHEMATICAL JOURNAL, 1985, 52 (02) : 431 - 456