A Concentration Phenomenon for Semilinear Elliptic Equations

被引:0
|
作者
Nils Ackermann
Andrzej Szulkin
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
[2] Circuito Exterior,Department of Mathematics
[3] C.U.,undefined
[4] Stockholm University,undefined
关键词
Soliton; Nontrivial Solution; Dielectric Response; Kerr Nonlinearity; Ground State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
For a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^{N}}$$\end{document} we consider the equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$\end{document}with zero Dirichlet boundary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\in(2, 2^*)}$$\end{document}. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V \geqq 0}$$\end{document} and Qn are bounded functions that are positive in a region contained in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} and negative outside, and such that the sets {Qn > 0} shrink to a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_0 \in \Omega}$$\end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \to \infty}$$\end{document}. We show that if un is a nontrivial solution corresponding to Qn, then the sequence (un) concentrates at x0 with respect to the H1 and certain Lq-norms. We also show that if the sets {Qn > 0} shrink to two points and un are ground state solutions, then they concentrate at one of these points.
引用
收藏
页码:1075 / 1089
页数:14
相关论文
共 50 条
  • [21] Semilinear elliptic equations and fixed points
    Barroso, CS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 745 - 749
  • [22] Symmetrization for singular semilinear elliptic equations
    Brandolini, B.
    Chiacchio, F.
    Trombetti, C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (02) : 389 - 404
  • [23] Semilinear elliptic equations with critical nonlinearities
    Tonkes, E
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (01) : 171 - 173
  • [24] A multiscale method for semilinear elliptic equations
    Chen, Peimin
    Allegretto, Walter
    Lin, Yanping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 362 - 371
  • [25] On the Cauchy problem for semilinear elliptic equations
    Nguyen Huy Tuan
    Tran Thanh Binh
    Viet, Tran Quoc
    Lesnic, Daniel
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (02): : 123 - 138
  • [26] Symmetrization for singular semilinear elliptic equations
    B. Brandolini
    F. Chiacchio
    C. Trombetti
    Annali di Matematica Pura ed Applicata, 2014, 193 : 389 - 404
  • [27] Semilinear elliptic equations with singular nonlinearities
    Lucio Boccardo
    Luigi Orsina
    Calculus of Variations and Partial Differential Equations, 2010, 37 : 363 - 380
  • [28] Geometric approaches to semilinear elliptic equations
    Wei, Juncheng
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 941 - 964
  • [29] A dynamical approach to semilinear elliptic equations
    Beck, Margaret
    Cox, Graham
    Jones, Christopher
    Latushkin, Yuri
    Sukhtayev, Alim
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (02): : 421 - 450
  • [30] ON SINGULAR SEMILINEAR ELLIPTIC-EQUATIONS
    SHAKER, AW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 173 (01) : 222 - 228