A Concentration Phenomenon for Semilinear Elliptic Equations

被引:0
|
作者
Nils Ackermann
Andrzej Szulkin
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
[2] Circuito Exterior,Department of Mathematics
[3] C.U.,undefined
[4] Stockholm University,undefined
关键词
Soliton; Nontrivial Solution; Dielectric Response; Kerr Nonlinearity; Ground State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
For a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^{N}}$$\end{document} we consider the equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$\end{document}with zero Dirichlet boundary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\in(2, 2^*)}$$\end{document}. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V \geqq 0}$$\end{document} and Qn are bounded functions that are positive in a region contained in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} and negative outside, and such that the sets {Qn > 0} shrink to a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_0 \in \Omega}$$\end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \to \infty}$$\end{document}. We show that if un is a nontrivial solution corresponding to Qn, then the sequence (un) concentrates at x0 with respect to the H1 and certain Lq-norms. We also show that if the sets {Qn > 0} shrink to two points and un are ground state solutions, then they concentrate at one of these points.
引用
收藏
页码:1075 / 1089
页数:14
相关论文
共 50 条
  • [31] ENTIRE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS
    Gladkov, Alexander
    Slepchenkov, Nickolai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [32] ON THE OSCILLATION OF SEMILINEAR ELLIPTIC DIFFERENTIAL EQUATIONS
    Xu, Zhiting
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2008, 3 (02): : 265 - 280
  • [33] SEMILINEAR ELLIPTIC EQUATIONS ON FRACTAL SETS
    陈化
    贺振亚
    Acta Mathematica Scientia, 2009, 29 (02) : 232 - 242
  • [34] On semilinear elliptic equations with diffuse measures
    Tomasz Klimsiak
    Andrzej Rozkosz
    Nonlinear Differential Equations and Applications NoDEA, 2018, 25
  • [35] A Bohr phenomenon for elliptic equations
    Aizenberg, L
    Tarkhanov, N
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 82 : 385 - 401
  • [36] A TRUNCATION METHOD FOR SEMILINEAR ELLIPTIC-EQUATIONS
    JIN, ZR
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (3-4) : 605 - 616
  • [37] Isolated boundary singularities of semilinear elliptic equations
    Marie-Françoise Bidaut-Véron
    Augusto C. Ponce
    Laurent Véron
    Calculus of Variations and Partial Differential Equations, 2011, 40 : 183 - 221
  • [38] On semilinear elliptic equations with borderline Hardy potentials
    Veronica Felli
    Alberto Ferrero
    Journal d'Analyse Mathématique, 2014, 123 : 303 - 340
  • [39] EXISTENCE THEOREM FOR A FAMILY OF SEMILINEAR ELLIPTIC EQUATIONS
    RABINOWITZ, PH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A680 - A680
  • [40] Regularity of the extremal solution of semilinear elliptic equations
    Nedev, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11): : 997 - 1002