A Concentration Phenomenon for Semilinear Elliptic Equations

被引:0
|
作者
Nils Ackermann
Andrzej Szulkin
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
[2] Circuito Exterior,Department of Mathematics
[3] C.U.,undefined
[4] Stockholm University,undefined
关键词
Soliton; Nontrivial Solution; Dielectric Response; Kerr Nonlinearity; Ground State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
For a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^{N}}$$\end{document} we consider the equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$\end{document}with zero Dirichlet boundary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\in(2, 2^*)}$$\end{document}. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V \geqq 0}$$\end{document} and Qn are bounded functions that are positive in a region contained in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} and negative outside, and such that the sets {Qn > 0} shrink to a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_0 \in \Omega}$$\end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \to \infty}$$\end{document}. We show that if un is a nontrivial solution corresponding to Qn, then the sequence (un) concentrates at x0 with respect to the H1 and certain Lq-norms. We also show that if the sets {Qn > 0} shrink to two points and un are ground state solutions, then they concentrate at one of these points.
引用
收藏
页码:1075 / 1089
页数:14
相关论文
共 50 条
  • [1] A Concentration Phenomenon for Semilinear Elliptic Equations
    Ackermann, Nils
    Szulkin, Andrzej
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (03) : 1075 - 1089
  • [2] CONCENTRATION AND DYNAMIC SYSTEM OF SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS
    Wu, Tsung-Fang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [3] Bubbling phenomenon for semilinear Neumann elliptic equations of critical exponential growth
    Lu Chen
    Guozhen Lu
    Caifeng Zhang
    Calculus of Variations and Partial Differential Equations, 2024, 63
  • [4] Bubbling phenomenon for semilinear Neumann elliptic equations of critical exponential growth
    Chen, Lu
    Lu, Guozhen
    Zhang, Caifeng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (01)
  • [5] Boundary concentration in radial solutions to a system of semilinear elliptic equations
    D'Aprile, Teresa
    Wei, Juncheng
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 415 - 440
  • [6] MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS WITH STEEP POTENTIAL
    Cheng, Yi-hsin
    Wu, Tsung-Fang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) : 2457 - 2473
  • [7] On some Semilinear Elliptic Equations
    Kalli, Kerime
    Soltanov, Kamal N.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 298 - 301
  • [8] ISOLATED SINGULARITY FOR SEMILINEAR ELLIPTIC EQUATIONS
    Wei, Lei
    Feng, Zhaosheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (07) : 3239 - 3252
  • [9] Symmetry of the solutions of semilinear elliptic equations
    Dolbeault, J
    Felmer, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (08): : 677 - 682
  • [10] On a class of semilinear elliptic equations in Rn
    Bae, S
    Chang, TK
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) : 225 - 250