Shimura subvarieties in the Prym locus of ramified Galois coverings

被引:0
|
作者
Gian Paolo Grosselli
Abolfazl Mohajer
机构
[1] Università di Pavia,Dipartimento di Matematica
[2] Universität Mainz,Institut für Mathematik, Fachbereich 08
来源
Collectanea Mathematica | 2023年 / 74卷
关键词
Prym variety; Prym map; Galois covering; 14H30; 14H40;
D O I
暂无
中图分类号
学科分类号
摘要
We study Shimura (special) subvarieties in the moduli space Ap,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p,D}$$\end{document} of complex abelian varieties of dimension p and polarization type D. These subvarieties arise from families of covers compatible with a fixed group action on the base curve such that the quotient of the base curve by the group is isomorphic to P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {P}}}^1$$\end{document}. We give a criterion for the image of these families under the Prym map to be a special subvariety and, using computer algebra, obtain 210 Shimura subvarieties contained in the Prym locus.
引用
收藏
页码:199 / 218
页数:19
相关论文
共 50 条