Cones of orthogonal Shimura subvarieties and equidistribution

被引:0
|
作者
Zuffetti, Riccardo [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
关键词
Primary; 14G35; Secondary; 14C25; 14F40; 11G18; 11F27; MODULAR-FORMS; VARIETIES; CYCLES;
D O I
10.1007/s00229-024-01586-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be an orthogonal Shimura variety, and let Crort(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}<^>{\textrm{ort}}_{r}(X)$$\end{document} be the cone generated by the cohomology classes of orthogonal Shimura subvarieties in X of dimension r. We investigate the asymptotic properties of the generating rays of Crort(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}<^>{\textrm{ort}}_{r}(X)$$\end{document} for large values of r. They accumulate towards rays generated by wedge products of the K & auml;hler class of X and the fundamental class of an orthogonal Shimura subvariety. We also compare Crort(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}<^>{\textrm{ort}}_{r}(X)$$\end{document} with the cone generated by the special cycles of dimension r. The main ingredient to achieve the results above is the equidistribution of orthogonal Shimura subvarieties.
引用
收藏
页码:791 / 811
页数:21
相关论文
共 50 条