Shimura subvarieties in the Prym locus of ramified Galois coverings

被引:0
|
作者
Gian Paolo Grosselli
Abolfazl Mohajer
机构
[1] Università di Pavia,Dipartimento di Matematica
[2] Universität Mainz,Institut für Mathematik, Fachbereich 08
来源
Collectanea Mathematica | 2023年 / 74卷
关键词
Prym variety; Prym map; Galois covering; 14H30; 14H40;
D O I
暂无
中图分类号
学科分类号
摘要
We study Shimura (special) subvarieties in the moduli space Ap,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p,D}$$\end{document} of complex abelian varieties of dimension p and polarization type D. These subvarieties arise from families of covers compatible with a fixed group action on the base curve such that the quotient of the base curve by the group is isomorphic to P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {P}}}^1$$\end{document}. We give a criterion for the image of these families under the Prym map to be a special subvariety and, using computer algebra, obtain 210 Shimura subvarieties contained in the Prym locus.
引用
收藏
页码:199 / 218
页数:19
相关论文
共 50 条
  • [1] Shimura subvarieties in the Prym locus of ramified Galois coverings
    Grosselli, Gian Paolo
    Mohajer, Abolfazl
    COLLECTANEA MATHEMATICA, 2023, 74 (01) : 199 - 218
  • [2] On Shimura subvarieties of the Prym locus
    Mohajer, Abolfazl
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (06) : 2589 - 2596
  • [3] Shimura Varieties in the Torelli Locus via Galois Coverings
    Frediani, Paola
    Ghigi, Alessandro
    Penegini, Matteo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10595 - 10623
  • [4] ON THE PRYM MAP OF GALOIS COVERINGS
    Mohajer, Abolfazl
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1793 - 1805
  • [5] Shimura curves in the Prym locus
    Colombo, Elisabetta
    Frediani, Paola
    Ghigif, Alessandro
    Penegini, Matteo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (02)
  • [6] Shimura varieties in the Torelli locus via Galois coverings of elliptic curves
    Paola Frediani
    Matteo Penegini
    Paola Porru
    Geometriae Dedicata, 2016, 181 : 177 - 192
  • [7] Shimura varieties in the Torelli locus via Galois coverings of elliptic curves
    Frediani, Paola
    Penegini, Matteo
    Porru, Paola
    GEOMETRIAE DEDICATA, 2016, 181 (01) : 177 - 192
  • [8] Shimura curves in the Prym loci of ramified double covers
    Frediani, Paola
    Grosselli, Gian Paolo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (14)
  • [9] Generic Torelli theorem for Prym varieties of ramified coverings
    Marcucci, Valeria Ornella
    Pirola, Gian Pietro
    COMPOSITIO MATHEMATICA, 2012, 148 (04) : 1147 - 1170
  • [10] GENERIC INJECTIVITY OF THE PRYM MAP FOR DOUBLE RAMIFIED COVERINGS
    Naranjo, Juan Carlos
    Ortega, Angela
    Verra, Alessandro
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (05) : 3627 - 3646