共 50 条
Shimura subvarieties in the Prym locus of ramified Galois coverings
被引:0
|作者:
Gian Paolo Grosselli
Abolfazl Mohajer
机构:
[1] Università di Pavia,Dipartimento di Matematica
[2] Universität Mainz,Institut für Mathematik, Fachbereich 08
来源:
关键词:
Prym variety;
Prym map;
Galois covering;
14H30;
14H40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study Shimura (special) subvarieties in the moduli space Ap,D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_{p,D}$$\end{document} of complex abelian varieties of dimension p and polarization type D. These subvarieties arise from families of covers compatible with a fixed group action on the base curve such that the quotient of the base curve by the group is isomorphic to P1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {P}}}^1$$\end{document}. We give a criterion for the image of these families under the Prym map to be a special subvariety and, using computer algebra, obtain 210 Shimura subvarieties contained in the Prym locus.
引用
收藏
页码:199 / 218
页数:19
相关论文