Shimura Varieties in the Torelli Locus via Galois Coverings

被引:38
|
作者
Frediani, Paola [1 ]
Ghigi, Alessandro [2 ]
Penegini, Matteo [3 ]
机构
[1] Univ Pavia, I-27100 Pavia, Italy
[2] Univ Milano Bicocca, Milan, Italy
[3] Univ Milan, Milan, Italy
关键词
COMPACT RIEMANN SURFACES; AUTOMORPHISM-GROUPS; MODULI SPACE; FAMILIES; CURVES;
D O I
10.1093/imrn/rnu272
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a family of Galois coverings of the projective line, we give a simple sufficient condition ensuring that the closure of the image of the family via the period mapping is a special (or Shimura) subvariety of A(g). By a computer program we get the list of all families in genus g <= 9 satisfying our condition. There are no families with g = 8, 9; all of them are in genus g <= 7. These examples are related to a conjecture of Oort. Among them we get the cyclic examples constructed by various authors (Shimura, Mostow, De Jong-Noot, Rohde, Moonen, and others) and the abelian noncyclic examples found by Moonen-Oort. We get seven new nonabelian examples.
引用
收藏
页码:10595 / 10623
页数:29
相关论文
共 50 条
  • [1] Shimura varieties in the Torelli locus via Galois coverings of elliptic curves
    Paola Frediani
    Matteo Penegini
    Paola Porru
    Geometriae Dedicata, 2016, 181 : 177 - 192
  • [2] Shimura varieties in the Torelli locus via Galois coverings of elliptic curves
    Frediani, Paola
    Penegini, Matteo
    Porru, Paola
    GEOMETRIAE DEDICATA, 2016, 181 (01) : 177 - 192
  • [3] Shimura subvarieties in the Prym locus of ramified Galois coverings
    Gian Paolo Grosselli
    Abolfazl Mohajer
    Collectanea Mathematica, 2023, 74 : 199 - 218
  • [4] Shimura subvarieties in the Prym locus of ramified Galois coverings
    Grosselli, Gian Paolo
    Mohajer, Abolfazl
    COLLECTANEA MATHEMATICA, 2023, 74 (01) : 199 - 218
  • [6] Symmetric spaces uniformizing Shimura varieties in the Torelli locus
    Carolina Tamborini
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2101 - 2119
  • [7] Newton Polygon Stratification of the Torelli Locus in Unitary Shimura Varieties
    Li, Wanlin
    Mantovan, Elena
    Pries, Rachel
    Tang, Yunqing
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (09) : 6464 - 6511
  • [8] The Oort conjecture on Shimura curves in the Torelli locus of curves
    Lu, Xin
    Zuo, Kang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 123 : 41 - 77
  • [9] Automorphic Galois representations and the cohomology of Shimura varieties
    Harris, Michael
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 367 - 389
  • [10] Galois-generic points on Shimura varieties
    Cadoret, Anna
    Kret, Arno
    ALGEBRA & NUMBER THEORY, 2016, 10 (09) : 1893 - 1934