The largest Erdős-Ko-Rado sets of planes in finite projective and finite classical polar spaces

被引:0
|
作者
Maarten De Boeck
机构
[1] UGent,Department of Mathematics
来源
关键词
Projective spaces; Classical polar spaces; Erdős-Ko-Rado sets; 05B25; 51E20; 51A50; 52C10;
D O I
暂无
中图分类号
学科分类号
摘要
Erdős-Ko-Rado sets of planes in a projective or polar space are non-extendable sets of planes such that every two have a non-empty intersection. In this article we classify all Erdős-Ko-Rado sets of planes that generate at least a 6-dimensional space. For general dimension (projective space) or rank (polar space) we give a classification of the ten largest types of Erdős-Ko-Rado sets of planes. For some small cases we find a better, sometimes complete, classification.
引用
收藏
页码:77 / 117
页数:40
相关论文
共 50 条
  • [41] VECTOR SPACES AND CONSTRUCTION OF FINITE PROJECTIVE PLANES
    OSTROM, TG
    ARCHIV DER MATHEMATIK, 1968, 19 (01) : 1 - &
  • [42] Linear sets in finite projective spaces
    Polverino, Olga
    DISCRETE MATHEMATICS, 2010, 310 (22) : 3096 - 3107
  • [43] On embeddings of the flag geometries of projective planes in finite projective spaces
    Thas, JA
    Van Maldeghem, H
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 17 (1-3) : 97 - 104
  • [44] On Embeddings of the Flag Geometries of Projective Planes in Finite Projective Spaces
    Joseph A. Thas
    Hendrik Van Maldeghem
    Designs, Codes and Cryptography, 1999, 17 : 97 - 104
  • [45] Sets of generators blocking all generators in finite classical polar spaces
    De Beule, Jan
    Hallez, Anja
    Metsch, Klaus
    Storme, Leo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) : 318 - 339
  • [46] Cameron-Liebler sets of generators in finite classical polar spaces
    De Boeck, Maarten
    Rodgers, Morgan
    Storme, Leo
    Svob, Andrea
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 167 : 340 - 388
  • [47] Lax embeddings of polar spaces in finite projective spaces
    Thas, JA
    Van Maldeghem, H
    FORUM MATHEMATICUM, 1999, 11 (03) : 349 - 367
  • [48] On line covers of finite projective and polar spaces
    Antonio Cossidente
    Francesco Pavese
    Designs, Codes and Cryptography, 2019, 87 : 1985 - 2002
  • [49] On line covers of finite projective and polar spaces
    Cossidente, Antonio
    Pavese, Francesco
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (09) : 1985 - 2002
  • [50] FINITE LINEAR-SPACES AND PROJECTIVE-PLANES
    ERDOS, P
    MULLIN, RC
    SOS, VT
    STINSON, DR
    DISCRETE MATHEMATICS, 1983, 47 (01) : 49 - 62