The largest Erdős-Ko-Rado sets of planes in finite projective and finite classical polar spaces

被引:0
|
作者
Maarten De Boeck
机构
[1] UGent,Department of Mathematics
来源
关键词
Projective spaces; Classical polar spaces; Erdős-Ko-Rado sets; 05B25; 51E20; 51A50; 52C10;
D O I
暂无
中图分类号
学科分类号
摘要
Erdős-Ko-Rado sets of planes in a projective or polar space are non-extendable sets of planes such that every two have a non-empty intersection. In this article we classify all Erdős-Ko-Rado sets of planes that generate at least a 6-dimensional space. For general dimension (projective space) or rank (polar space) we give a classification of the ten largest types of Erdős-Ko-Rado sets of planes. For some small cases we find a better, sometimes complete, classification.
引用
收藏
页码:77 / 117
页数:40
相关论文
共 50 条
  • [21] Inverse problems of the Erd?s-Ko-Rado type theorems for families of vector spaces and permutations
    Xiangliang Kong
    Yuanxiao Xi
    Bingchen Qian
    Gennian Ge
    Science China(Mathematics), 2022, 65 (05) : 1081 - 1108
  • [22] Erdős-Ko-Rado theorem in Peisert-type graphs
    Yip, Chi Hoi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (01): : 176 - 187
  • [23] Erdős-Ko-Rado theorem for irreducible imprimitive reflection groups
    Li Wang
    Frontiers of Mathematics in China, 2012, 7 : 125 - 144
  • [24] The Erdős-Ko-Rado Property for Some 2-Transitive Groups
    Bahman Ahmadi
    Karen Meagher
    Annals of Combinatorics, 2015, 19 : 621 - 640
  • [25] Very well-covered graphs with the Erd?s-Ko-Rado property
    De Silva, Jessica
    Dionne, Adam B.
    Dunkelberg, Aidan
    Harris, Pamela E.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (01): : 35 - 47
  • [26] Erdős-Ko-Rado Theorem for Matrices Over Residue Class Rings
    Jun Guo
    Graphs and Combinatorics, 2021, 37 : 2497 - 2510
  • [27] 有限仿射辛空间的Erd?s-Ko-Rado定理
    郝珊珊
    蔡炳苓
    康娜
    河北师范大学学报(自然科学版), 2020, 44 (01) : 1 - 5
  • [28] Tight sets in finite classical polar spaces
    Nakic, Anamari
    Storme, Leo
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 109 - 129
  • [29] A Turán Theorem for Extensions Via an Erdős-Ko-Rado Theorem for Lagrangians
    Adam Bene Watts
    Sergey Norin
    Liana Yepremyan
    Combinatorica, 2019, 39 : 1149 - 1171
  • [30] Erds-Ko-Rado定理的一个新证明
    林庆泽
    成都大学学报(自然科学版), 2016, 35 (04) : 342 - 344