The largest Erdős-Ko-Rado sets of planes in finite projective and finite classical polar spaces

被引:0
|
作者
Maarten De Boeck
机构
[1] UGent,Department of Mathematics
来源
关键词
Projective spaces; Classical polar spaces; Erdős-Ko-Rado sets; 05B25; 51E20; 51A50; 52C10;
D O I
暂无
中图分类号
学科分类号
摘要
Erdős-Ko-Rado sets of planes in a projective or polar space are non-extendable sets of planes such that every two have a non-empty intersection. In this article we classify all Erdős-Ko-Rado sets of planes that generate at least a 6-dimensional space. For general dimension (projective space) or rank (polar space) we give a classification of the ten largest types of Erdős-Ko-Rado sets of planes. For some small cases we find a better, sometimes complete, classification.
引用
收藏
页码:77 / 117
页数:40
相关论文
共 50 条