Let U(λ, µ) denote the class of all normalized analytic functions f in the unit disk |z| < 1 satisfying the condition \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\frac{{f(z)}}
{z} \ne 0and\left| {f'(z)\left( {\frac{z}
{{f(z)}}} \right)^{\mu + 1} - 1} \right| < \lambda ,\left| z \right| < 1.
$$\end{document} For f ∈ U(λ, µ) with µ ≤ 1 and 0 ≠ µ1 ≤ 1, and for a positive real-valued integrable function φ defined on [0, 1] satisfying the normalized condition ∫01φ(t)dt = 1, we consider the transform Gφf (z) defined by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
G_\phi f(z) = z\left[ {\int_0^1 {\phi (t)\left( {\frac{{zt}}
{{f(tz)}}} \right)^\mu dt} } \right]^{ - 1/\mu _1 } ,z \in \Delta .
$$\end{document} In this paper, we find conditions on the range of parameters λ and µ so that the transform Gφf is univalent or star-like. In addition, for a given univalent function of certain form, we provide a method of obtaining functions in the class U(λ, µ).