Duality and Integral Transform of a Class of Analytic Functions

被引:0
|
作者
Sarika Verma
Sushma Gupta
Sukhjit Singh
机构
[1] Sant Longowal Institute of Engineering and Technology,
关键词
Starlike function; Hadamard product; Duality; 30C45; 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
For α,γ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \gamma \ge 0$$\end{document} and β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta <1$$\end{document}, let Wβ(α,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {W}}_{\beta }(\alpha , \gamma )$$\end{document} denote the class of all normalized analytic functions f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} in the open unit disk E={z:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\{z:|z|<1\}$$\end{document} such that Reiϕ(1-α+2γ)f(z)z+(α-2γ)f′(z)+γzf′′(z)-β>0,z∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathfrak {R}e^{i\phi }\left( (1-\alpha +2\gamma )\frac{f(z)}{z}+(\alpha -2\gamma )f'(z)+\gamma zf''(z)-\beta \right) >0, \, \, \, z\in E \end{aligned}$$\end{document}for some ϕ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in {\mathbb {R}}$$\end{document}. For f∈Wβ(α,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\mathcal {W}}_{\beta }(\alpha , \gamma )}$$\end{document}, we consider the integral transform Vλ(f)(z):=∫01λ(t)f(tz)tdt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} V_{\lambda }(f)(z):=\int _{0}^{1}\lambda (t)\frac{f(tz)}{t}\mathrm{d}t, \end{aligned}$$\end{document}where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a non-negative real-valued integrable function satisfying the condition ∫01λ(t)dt=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{0}^{1}\lambda (t)\mathrm{d}t=1$$\end{document}. In a very recent paper, Ali et al. (J Math Anal Appl 385:808–822, 2012) discussed the starlikeness of the integral transform Vλ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\lambda }(f)$$\end{document} when f∈Wβ(α,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\mathcal {W}}}_{\beta }(\alpha , \gamma )$$\end{document}. The aim of present paper is to find conditions on λ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (t)$$\end{document} such that Vλ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\lambda }(f)$$\end{document} is starlike of order δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} (0≤δ≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \delta \le 1/2$$\end{document}) when f∈Wβ(α,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\mathcal {W}}}_{\beta }(\alpha , \gamma )$$\end{document}. As applications, we study various choices of λ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (t)$$\end{document}, related to classical integral transforms.
引用
收藏
页码:649 / 668
页数:19
相关论文
共 50 条
  • [1] Duality and Integral Transform of a Class of Analytic Functions
    Verma, Sarika
    Gupta, Sushma
    Singh, Sukhjit
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) : 649 - 668
  • [2] On an Integral Transform of a Class of Analytic Functions
    Verma, Sarika
    Gupta, Sushma
    Singh, Sukhjit
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [3] Integral Transforms of Functions to Be in a Class of Analytic Functions Using Duality Techniques
    Devi, Satwanti
    Swaminathan, A.
    JOURNAL OF COMPLEX ANALYSIS, 2014,
  • [4] Univalence and starlikeness of nonlinear integral transform of certain class of analytic functions
    Obradovic, M.
    Ponnusamy, S.
    Vasundhra, P.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (05): : 593 - 610
  • [5] Univalence and starlikeness of nonlinear integral transform of certain class of analytic functions
    M. Obradović
    S. Ponnusamy
    P. Vasundhra
    Proceedings - Mathematical Sciences, 2009, 119 : 593 - 610
  • [6] Integral transforms of a class of analytic functions
    Ponnusamy, S.
    Ronning, F.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (05) : 423 - 434
  • [7] ON AN INTEGRAL TRANSFORM OF COMPLEX ANALYTIC-FUNCTIONS
    STERNIN, BY
    SHATALOV, VE
    MATHEMATICS OF THE USSR-IZVESTIYA, 1986, 50 (05): : 407 - 427
  • [8] Duality for convolution on subclasses of analytic functions and weighted integral operators
    Amini, Ebrahim
    Fardi, Mojtaba
    Al-Omari, Shrideh
    Nonlaopon, Kamsing
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [9] On a Class of Analytic Functions Defined by an Integral Operator
    Sahool, Pravati
    Singh, Saumya
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [10] A class of integral operators on spaces of analytic functions
    Ballamoole, S.
    Miller, T. L.
    Miller, V. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) : 188 - 210