Univalence and starlikeness of nonlinear integral transform of certain class of analytic functions

被引:0
|
作者
M. Obradović
S. Ponnusamy
P. Vasundhra
机构
[1] Faculty of Civil Engineering,Department of Mathematics
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Univalent; Bazilevič; star-like and spiral-like functions; integral transforms;
D O I
暂无
中图分类号
学科分类号
摘要
Let U(λ, µ) denote the class of all normalized analytic functions f in the unit disk |z| < 1 satisfying the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{f(z)}} {z} \ne 0and\left| {f'(z)\left( {\frac{z} {{f(z)}}} \right)^{\mu + 1} - 1} \right| < \lambda ,\left| z \right| < 1. $$\end{document} For f ∈ U(λ, µ) with µ ≤ 1 and 0 ≠ µ1 ≤ 1, and for a positive real-valued integrable function φ defined on [0, 1] satisfying the normalized condition ∫01φ(t)dt = 1, we consider the transform Gφf (z) defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G_\phi f(z) = z\left[ {\int_0^1 {\phi (t)\left( {\frac{{zt}} {{f(tz)}}} \right)^\mu dt} } \right]^{ - 1/\mu _1 } ,z \in \Delta . $$\end{document} In this paper, we find conditions on the range of parameters λ and µ so that the transform Gφf is univalent or star-like. In addition, for a given univalent function of certain form, we provide a method of obtaining functions in the class U(λ, µ).
引用
收藏
页码:593 / 610
页数:17
相关论文
共 50 条
  • [1] Univalence and starlikeness of nonlinear integral transform of certain class of analytic functions
    Obradovic, M.
    Ponnusamy, S.
    Vasundhra, P.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (05): : 593 - 610
  • [2] Univalence and Starlikeness of Certain Classes of Analytic Functions
    Alarifi, Najla M.
    Obradovic, M.
    [J]. SYMMETRY-BASEL, 2023, 15 (05):
  • [3] ON UNIVALENCE, STARLIKENESS AND CONVEXITY OF CERTAIN ANALYTIC-FUNCTIONS
    SAMARIS, N
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1994, 45 (3-4): : 293 - 304
  • [4] ON THE RADIUS OF UNIVALENCE AND STARLIKENESS OF A CLASS OF ANALYTIC-FUNCTIONS
    RANGARAJAN, MR
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (02): : 245 - 251
  • [5] Univalence and starlikeness of certain transforms defined by convolution of analytic functions
    Obradovic, M.
    Ponnusamy, S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 758 - 767
  • [6] RADIUS OF UNIVALENCE AND STARLIKENESS OF CERTAIN CLASSES OF ANALYTIC-FUNCTIONS
    BERNARDI, SD
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A332 - A332
  • [7] On the starlikeness of certain class of analytic functions
    Sivasubramanian, S.
    Darus, Maslina
    Ibrahim, Rabha W.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) : 112 - 118
  • [8] Starlikeness criteria for a certain class of analytic functions
    Ponnusamy, S.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 381 - 386
  • [9] On the Starlikeness of Certain Class of Multivalent Analytic Functions
    Shi, Lei
    Wang, Zhi-Gang
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] Radius of univalence of certain class of analytic functions
    Obradovic, M.
    Ponnusamy, S.
    [J]. FILOMAT, 2013, 27 (06) : 1085 - 1090