Univalence and starlikeness of nonlinear integral transform of certain class of analytic functions

被引:0
|
作者
M. Obradović
S. Ponnusamy
P. Vasundhra
机构
[1] Faculty of Civil Engineering,Department of Mathematics
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Univalent; Bazilevič; star-like and spiral-like functions; integral transforms;
D O I
暂无
中图分类号
学科分类号
摘要
Let U(λ, µ) denote the class of all normalized analytic functions f in the unit disk |z| < 1 satisfying the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{f(z)}} {z} \ne 0and\left| {f'(z)\left( {\frac{z} {{f(z)}}} \right)^{\mu + 1} - 1} \right| < \lambda ,\left| z \right| < 1. $$\end{document} For f ∈ U(λ, µ) with µ ≤ 1 and 0 ≠ µ1 ≤ 1, and for a positive real-valued integrable function φ defined on [0, 1] satisfying the normalized condition ∫01φ(t)dt = 1, we consider the transform Gφf (z) defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G_\phi f(z) = z\left[ {\int_0^1 {\phi (t)\left( {\frac{{zt}} {{f(tz)}}} \right)^\mu dt} } \right]^{ - 1/\mu _1 } ,z \in \Delta . $$\end{document} In this paper, we find conditions on the range of parameters λ and µ so that the transform Gφf is univalent or star-like. In addition, for a given univalent function of certain form, we provide a method of obtaining functions in the class U(λ, µ).
引用
收藏
页码:593 / 610
页数:17
相关论文
共 50 条