Duality and Integral Transform of a Class of Analytic Functions

被引:0
|
作者
Sarika Verma
Sushma Gupta
Sukhjit Singh
机构
[1] Sant Longowal Institute of Engineering and Technology,
关键词
Starlike function; Hadamard product; Duality; 30C45; 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
For α,γ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \gamma \ge 0$$\end{document} and β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta <1$$\end{document}, let Wβ(α,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {W}}_{\beta }(\alpha , \gamma )$$\end{document} denote the class of all normalized analytic functions f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} in the open unit disk E={z:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\{z:|z|<1\}$$\end{document} such that Reiϕ(1-α+2γ)f(z)z+(α-2γ)f′(z)+γzf′′(z)-β>0,z∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathfrak {R}e^{i\phi }\left( (1-\alpha +2\gamma )\frac{f(z)}{z}+(\alpha -2\gamma )f'(z)+\gamma zf''(z)-\beta \right) >0, \, \, \, z\in E \end{aligned}$$\end{document}for some ϕ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in {\mathbb {R}}$$\end{document}. For f∈Wβ(α,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\mathcal {W}}_{\beta }(\alpha , \gamma )}$$\end{document}, we consider the integral transform Vλ(f)(z):=∫01λ(t)f(tz)tdt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} V_{\lambda }(f)(z):=\int _{0}^{1}\lambda (t)\frac{f(tz)}{t}\mathrm{d}t, \end{aligned}$$\end{document}where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a non-negative real-valued integrable function satisfying the condition ∫01λ(t)dt=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{0}^{1}\lambda (t)\mathrm{d}t=1$$\end{document}. In a very recent paper, Ali et al. (J Math Anal Appl 385:808–822, 2012) discussed the starlikeness of the integral transform Vλ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\lambda }(f)$$\end{document} when f∈Wβ(α,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\mathcal {W}}}_{\beta }(\alpha , \gamma )$$\end{document}. The aim of present paper is to find conditions on λ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (t)$$\end{document} such that Vλ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\lambda }(f)$$\end{document} is starlike of order δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} (0≤δ≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \delta \le 1/2$$\end{document}) when f∈Wβ(α,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\mathcal {W}}}_{\beta }(\alpha , \gamma )$$\end{document}. As applications, we study various choices of λ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (t)$$\end{document}, related to classical integral transforms.
引用
收藏
页码:649 / 668
页数:19
相关论文
共 50 条
  • [41] Moutard Transform for Generalized Analytic Functions
    Grinevich, P. G.
    Novikov, R. G.
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2984 - 2995
  • [42] Moutard Transform for Generalized Analytic Functions
    P. G. Grinevich
    R. G. Novikov
    The Journal of Geometric Analysis, 2016, 26 : 2984 - 2995
  • [43] Certain Integral Operators of Analytic Functions
    Lupas, Alina Alb
    Andrei, Loriana
    MATHEMATICS, 2021, 9 (20)
  • [44] INTEGRAL MEANS OF ANALYTIC-FUNCTIONS
    PINCHUK, B
    ISRAEL JOURNAL OF MATHEMATICS, 1974, 17 (01) : 105 - 107
  • [45] THE INTEGRAL MEANS OF ANALYTIC-FUNCTIONS
    EENIGENBURG, PJ
    QUARTERLY JOURNAL OF MATHEMATICS, 1981, 32 (127): : 313 - 322
  • [46] Integral representations of analytic and harmonic functions
    I. I. Bavrin
    Doklady Mathematics, 2011, 83 : 364 - 366
  • [47] Integral Representations of Analytic and Harmonic Functions
    Bavrin, I. I.
    DOKLADY MATHEMATICS, 2011, 83 (03) : 364 - 366
  • [48] CLASS OF ANALYTIC-FUNCTIONS
    SUITA, N
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 43 (01) : 249 - 250
  • [49] New Integral Operator for Analytic Functions
    Guney, H. Ozlem
    Owa, Shigeyoshi
    Attiya, Adel A.
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [50] ON A CLASS OF GENERALIZED ANALYTIC FUNCTIONS
    Kalla, S. L.
    Virchenko, N.
    Alexsandrovich, I.
    MATEMATICHE, 2012, 67 (02): : 45 - 58