Equidistribution of solutions of ternary quadratic congruences modulo prime powers

被引:0
|
作者
Haldar, Anup [1 ]
机构
[1] Ramakrishna Mission Vivekananda Educ & Res Inst, Dept Math, GT Rd,PO Belur Math, Howrah 711202, West Bengal, India
关键词
Quadratic congruences; Poisson summation; Evaluation of complete exponential sums; Parametrization of points; Diophantine equations;
D O I
10.1007/s40993-024-00535-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a fixed odd prime and Q(x,y,z)=ax2+bxy+cy2+dxz+eyz+fz2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(x,y,z)=ax<^>2+bxy+cy<^>2+dxz+eyz+fz<^>2$$\end{document} be a fixed quadratic form in Z[x,y,z]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}[x,y,z]$$\end{document} which is non-degenerate in Fp[x,y,z]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p[x,y,z]$$\end{document} and gcd(a(4ac-b2),p)=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (a(4ac-b<^>2),p)=1.$$\end{document} Let (x0,y0,z0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_0,y_0,z_0)$$\end{document} be a fixed point in Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>3$$\end{document}. We study the behavior of solutions (x, y, z) of congruences of the form Q(x,y,z)equivalent to 0modq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(x,y,z)\equiv 0\bmod {q}$$\end{document} with q=pn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=p<^>n,$$\end{document} where max{|x-x0|,|y-y0|,|z-z0|}<= N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{|x-x_0|,|y-y_0|,|z-z_0|\}\le N$$\end{document} and gcd(z,p)=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (z,p)=1. $$\end{document} In fact, we consider a smooth version of this problem and establish an asymptotic formula (thus the existence of such solutions) when n ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}, under the condition N >= q12+epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge q<^>{\frac{1}{2}+\varepsilon }$$\end{document}.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Solving systems of polynomial congruences modulo a large prime
    Huang, MD
    Wong, YC
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 115 - 124
  • [42] Explicit congruences for the partition function modulo every prime
    Chua, KS
    [J]. ARCHIV DER MATHEMATIK, 2003, 81 (01) : 11 - 21
  • [43] Universal Kummer congruences mod prime powers
    Adelberg, A
    [J]. JOURNAL OF NUMBER THEORY, 2004, 109 (02) : 362 - 378
  • [44] Equidistribution of Heegner points and ternary quadratic forms
    Jetchev, Dimitar
    Kane, Ben
    [J]. MATHEMATISCHE ANNALEN, 2011, 350 (03) : 501 - 532
  • [45] Equidistribution of Heegner points and ternary quadratic forms
    Dimitar Jetchev
    Ben Kane
    [J]. Mathematische Annalen, 2011, 350 : 501 - 532
  • [46] A BINOMIAL COEFFICIENT CONGRUENCE MODULO PRIME POWERS
    DAVIS, K
    WEBB, W
    [J]. JOURNAL OF NUMBER THEORY, 1993, 43 (01) : 20 - 23
  • [47] A LUCAS TYPE THEOREM MODULO PRIME POWERS
    Mestrovic, Romeo
    [J]. FIBONACCI QUARTERLY, 2013, 51 (02): : 142 - 146
  • [48] ON MODULAR GALOIS REPRESENTATIONS MODULO PRIME POWERS
    Chen, Imin
    Kiming, Ian
    Wiese, Gabor
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (01) : 91 - 113
  • [49] Binomial Character Sums Modulo Prime Powers
    Pigno, Vincent
    Pinner, Christopher
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2016, 28 (01): : 39 - 53
  • [50] Matrix Kloosterman sums modulo prime powers
    M. Erdélyi
    Á. Tóth
    G. Zábrádi
    [J]. Mathematische Zeitschrift, 2024, 306