A LUCAS TYPE THEOREM MODULO PRIME POWERS

被引:0
|
作者
Mestrovic, Romeo [1 ]
机构
[1] Univ Montenegro, Maritime Fac Kotor, Dept Math, Dobrota 36, Kotor 85330, Montenegro
来源
FIBONACCI QUARTERLY | 2013年 / 51卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we prove that (np(s) mp(s)+r) equivalent to (-1)(r-1)r(-1) (m + 1) (n m+1)p(s) (mod p(s+1)) where p is any prime, n, m, s and r are nonnegative integers such that n >= m, s >= 1, 1 <= r <= p(s) - 1 and r is not divisible by p. We derive a proof by induction using a multiple application of Lucas' Theorem and two basic binomial coefficient identities. As an application, we prove that a similar congruence for a prime p >= 5 established in 1992 by D. F. Bailey holds for all primes p.
引用
收藏
页码:142 / 146
页数:5
相关论文
共 50 条