Matrix Kloosterman sums modulo prime powers

被引:0
|
作者
M. Erdélyi
Á. Tóth
G. Zábrádi
机构
[1] HUN-REN Alfréd Rényi Institute of Mathematics,“Lendület” Analytic Number Theory and Representation Theory Research Group
[2] Budapest University of Technology and Economics,Institute of Mathematics
[3] Eötvös Loránd University,“Lendület” Automorphic Research Group
[4] HUN-REN Alfréd Rényi Institute of Mathematics,undefined
来源
Mathematische Zeitschrift | 2024年 / 306卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We give optimal bounds for matrix Kloosterman sums modulo prime powers extending earlier work of the first two authors on the case of prime moduli. These exponential sums arise in the theory of the horocyclic flow on GLn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GL_n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Matrix Kloosterman sums modulo prime powers
    Erdelyi, M.
    Toth, A.
    Zabradi, G.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (04)
  • [2] DISTRIBUTION OF TWISTED KLOOSTERMAN SUMS MODULO PRIME POWERS
    Kelmer, Dubi
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (02) : 271 - 280
  • [3] On short Kloosterman sums modulo a prime
    Korolev, M. A.
    [J]. MATHEMATICAL NOTES, 2016, 100 (5-6) : 820 - 827
  • [4] On short Kloosterman sums modulo a prime
    M. A. Korolev
    [J]. Mathematical Notes, 2016, 100 : 820 - 827
  • [5] SUMS OF SUBSEQUENCES MODULO PRIME POWERS
    ALON, N
    [J]. DISCRETE MATHEMATICS, 1988, 71 (01) : 87 - 88
  • [6] Exponential sums modulo prime powers
    Cochrane, T
    [J]. ACTA ARITHMETICA, 2002, 101 (02) : 131 - 149
  • [7] CANCELLATIONS BETWEEN KLOOSTERMAN SUMS MODULO A PRIME POWER WITH PRIME ARGUMENTS
    Liu, Kui
    Shparlinski, Igor E.
    Zhang, Tianping
    [J]. MATHEMATIKA, 2019, 65 (03) : 475 - 487
  • [8] Binomial Character Sums Modulo Prime Powers
    Pigno, Vincent
    Pinner, Christopher
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2016, 28 (01): : 39 - 53
  • [9] TWISTED MONOMIAL GAUSS SUMS MODULO PRIME POWERS
    Pigno, Vincent
    Pinner, Christopher
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 51 (02) : 285 - 301
  • [10] Congruences for sums of powers of Kloosterman sums
    Choi, H. Timothy
    Evans, Ronald
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (01) : 105 - 117