Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping

被引:0
|
作者
Gimyong Hong
Hakho Hong
机构
[1] University of Sciences,Faculty of Mathematics
[2] State Academy of Sciences,Institute of Mathematics
来源
关键词
transmission problem; Kirchhoff plate; Kelvin-Voigt damping; energy decay; Carleman estimate; 35Q74; 93D15; 35L57; 74M05;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the Kirchhoff transmission plate equation.
引用
收藏
页码:21 / 47
页数:26
相关论文
共 50 条
  • [31] General decay of solutions for a viscoelastic porous system with Kelvin-Voigt damping
    Makheloufi, Hocine
    Apalara, Tijani A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [32] Parametric studies on bending vibration of axially-loaded twisted Timoshenko beams with locally distributed Kelvin-Voigt damping
    Chen, Wei-Ren
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2014, 88 : 61 - 70
  • [33] Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin-Voigt Damping
    Ammari, Kais
    Cavalcanti, Marcelo M.
    Mansouri, Sabeur
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [34] Stability Results for a Laminated Beam with Kelvin-Voigt Damping
    Ramos, A. J. A.
    Freitas, M. M.
    Cabanillas, V. R.
    Dos Santos, M. J.
    Raposo, C. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)
  • [35] EVENTUAL DIFFERENTIABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING
    Liu, Kangsheng
    Liu, Zhuangyi
    Zhang, Qiong
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 443 - 454
  • [36] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [37] Asymptotic behavior of laminated beams with Kelvin-Voigt damping
    Victor R. Cabanillas
    Teófanes Quispe Méndez
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (1)
  • [38] Generalized Kelvin-Voigt Damping for Geometrically Nonlinear Beams
    Artola, Marc
    Wynn, Andrew
    Palacios, Rafael
    AIAA JOURNAL, 2021, 59 (01) : 356 - 365
  • [39] Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4471 - 4476
  • [40] Optimal decay for coupled waves with Kelvin-Voigt damping
    Oquendo, Higidio Portillo
    Pacheco, Patricia Sanez
    APPLIED MATHEMATICS LETTERS, 2017, 67 : 16 - 20