Diffusion, Cross-diffusion and Competitive Interaction

被引:0
|
作者
Masato Iida
Masayasu Mimura
Hirokazu Ninomiya
机构
[1] Iwate University,Department of Mathematics, Faculty of Humanities and Social Sciences
[2] Meiji University,Department of Mathematics, School of Science and Technology
[3] Ryukoku University,Department of Applied Mathematics and Informatics
来源
关键词
Reaction-diffusion systems; Cross-diffusion systems; Turing’s instability; 35B25; 35K55; 35K57;
D O I
暂无
中图分类号
学科分类号
摘要
The cross-diffusion competition systems were introduced by Shigesada et al. [J. Theor. Biol. 79, 83–99 (1979)] to describe the population pressure by other species. In this paper, introducing the densities of the active individuals and the less active ones, we show that the cross-diffusion competition system can be approximated by the reaction-diffusion system which only includes the linear diffusion. The linearized stability around the constant equilibrium solution is also studied, which implies that the cross-diffusion induced instability can be regarded as Turing’s instability of the corresponding reaction-diffusion system.
引用
收藏
页码:617 / 641
页数:24
相关论文
共 50 条
  • [1] Diffusion, cross-diffusion and competitive interaction
    Iida, Masato
    Mimura, Masayasu
    Ninomiya, Hirokazu
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (04) : 617 - 641
  • [2] Diffusion, self-diffusion and cross-diffusion
    Lou, Y
    Ni, WM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (01) : 79 - 131
  • [3] Cross-Diffusion Driven Instability in a Predator-Prey System with Cross-Diffusion
    E. Tulumello
    M. C. Lombardo
    M. Sammartino
    [J]. Acta Applicandae Mathematicae, 2014, 132 : 621 - 633
  • [4] Nonlinear degenerate cross-diffusion systems with nonlocal interaction
    Di Francesco, M.
    Esposito, A.
    Fagioli, S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 169 : 94 - 117
  • [5] Cross-Diffusion Driven Instability in a Predator-Prey System with Cross-Diffusion
    Tulumello, E.
    Lombardo, M. C.
    Sammartino, M.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 621 - 633
  • [6] Diffusion vs cross-diffusion: An elliptic approach
    Lou, Y
    Ni, WM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) : 157 - 190
  • [7] Vanishing cross-diffusion limit in a Keller-Segel system with additional cross-diffusion
    Juengel, Ansgar
    Leingang, Oliver
    Wang, Shu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [8] PEB model with cross-diffusion
    Granik, Y
    [J]. ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XX, PTS 1 AND 2, 2003, 5039 : 1098 - 1104
  • [9] A predator-prey interaction model with self and cross-diffusion
    Dubey, B
    Das, B
    Hussain, J
    [J]. ECOLOGICAL MODELLING, 2001, 141 (1-3) : 67 - 76
  • [10] Cross-Diffusion Modeling in Macroeconomics
    Balázsi L.
    Kiss K.
    [J]. Differential Equations and Dynamical Systems, 2015, 23 (2) : 147 - 166