Nonlinear degenerate cross-diffusion systems with nonlocal interaction

被引:28
|
作者
Di Francesco, M. [1 ]
Esposito, A. [1 ]
Fagioli, S. [1 ]
机构
[1] Univ Aquila, DISIM Dept Informat Engn Comp Sci & Math, Via Vetoio 1 Coppito, I-67100 Laquila, AQ, Italy
关键词
Cross-diffusion systems; Nonlocal interaction; JKO scheme; CONTINUITY EQUATIONS; PARABOLIC-SYSTEMS; MODEL; EVOLUTION; AGGREGATION; CONVEXITY; EXISTENCE; SWARM; FLOWS;
D O I
10.1016/j.na.2017.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove global-in-time existence of weak solutions by means of a semi-implicit version of the Jordan-Kinderlehrer-Otto scheme. Our approach allows to consider nonlocal interaction terms not necessarily yielding a formal gradient flow structure. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:94 / 117
页数:24
相关论文
共 50 条
  • [1] Homogenization of degenerate cross-diffusion systems
    Jungel, Ansgar
    Ptashnyk, Mariya
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5543 - 5575
  • [2] Porous medium equation and cross-diffusion systems as limit of nonlocal interaction
    Burger, Martin
    Esposito, Antonio
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 235
  • [3] MARTINGALE SOLUTIONS OF STOCHASTIC NONLOCAL CROSS-DIFFUSION SYSTEMS
    Bendahmane, Mostafa
    Karlsen, Kenneth H.
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2022, 17 (05) : 719 - 752
  • [4] A DEGENERATE CROSS-DIFFUSION SYSTEM AS THE INVISCID LIMIT OF A NONLOCAL TISSUE GROWTH MODEL
    David, Noemi
    Debiec, Tomasz
    Mandal, Mainak
    Schmidtchen, Markus
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) : 2090 - 2114
  • [5] Stochastic Models for Nonlinear Cross-Diffusion Systems
    Belopolskaya, Yana
    [J]. STATISTICS AND SIMULATION, IWS 8 2015, 2018, 231 : 145 - 159
  • [6] On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion
    Berendsen, Judith
    Burger, Martin
    Pietschmann, Jan-Frederik
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 : 10 - 39
  • [7] On nonlinear cross-diffusion systems: an optimal transport approach
    Inwon Kim
    Alpár Richárd Mészáros
    [J]. Calculus of Variations and Partial Differential Equations, 2018, 57
  • [8] On nonlinear cross-diffusion systems: an optimal transport approach
    Kim, Inwon
    Meszaros, Alpar Richard
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
  • [9] Reduced order modelling of nonlinear cross-diffusion systems
    Karasozen, Bulent
    Mulayim, Gulden
    Uzunca, Murat
    Yildiz, Suleyman
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 401
  • [10] A LINEAR SCHEME TO APPROXIMATE NONLINEAR CROSS-DIFFUSION SYSTEMS
    Murakawa, Hideki
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (06): : 1141 - 1161