Diffusion, cross-diffusion and competitive interaction

被引:91
|
作者
Iida, Masato
Mimura, Masayasu
Ninomiya, Hirokazu [1 ]
机构
[1] Ryukoku Univ, Dept Appl Math & Informat, Seta Ku, Otsu, Shiga 5202194, Japan
[2] Iwate Univ, Dept Math, Fac Humanities & Social Sci, Morioka, Iwate 0208550, Japan
[3] Meiji Univ, Sch Sci & Technol, Dept Math, Tama Ku, Kawasaki 2148571, Japan
关键词
reaction-diffusion systems; cross-diffusion systems; Turing's instability;
D O I
10.1007/s00285-006-0013-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The cross-diffusion competition systems were introduced by Shigesada et al. [J. Theor. Biol. 79, 83-99 (1979)] to describe the population pressure by other species. In this paper, introducing the densities of the active individuals and the less active ones, we show that the cross-diffusion competition system can be approximated by the reaction-diffusion system which only includes the linear diffusion. The linearized stability around the constant equilibrium solution is also studied, which implies that the cross-diffusion induced instability can be regarded as Turing's instability of the corresponding reaction-diffusion system.
引用
收藏
页码:617 / 641
页数:25
相关论文
共 50 条
  • [1] Diffusion, Cross-diffusion and Competitive Interaction
    Masato Iida
    Masayasu Mimura
    Hirokazu Ninomiya
    [J]. Journal of Mathematical Biology, 2006, 53 : 617 - 641
  • [2] Diffusion, self-diffusion and cross-diffusion
    Lou, Y
    Ni, WM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (01) : 79 - 131
  • [3] Cross-Diffusion Driven Instability in a Predator-Prey System with Cross-Diffusion
    E. Tulumello
    M. C. Lombardo
    M. Sammartino
    [J]. Acta Applicandae Mathematicae, 2014, 132 : 621 - 633
  • [4] Nonlinear degenerate cross-diffusion systems with nonlocal interaction
    Di Francesco, M.
    Esposito, A.
    Fagioli, S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 169 : 94 - 117
  • [5] Cross-Diffusion Driven Instability in a Predator-Prey System with Cross-Diffusion
    Tulumello, E.
    Lombardo, M. C.
    Sammartino, M.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 621 - 633
  • [6] Diffusion vs cross-diffusion: An elliptic approach
    Lou, Y
    Ni, WM
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) : 157 - 190
  • [7] Vanishing cross-diffusion limit in a Keller-Segel system with additional cross-diffusion
    Juengel, Ansgar
    Leingang, Oliver
    Wang, Shu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [8] PEB model with cross-diffusion
    Granik, Y
    [J]. ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XX, PTS 1 AND 2, 2003, 5039 : 1098 - 1104
  • [9] A predator-prey interaction model with self and cross-diffusion
    Dubey, B
    Das, B
    Hussain, J
    [J]. ECOLOGICAL MODELLING, 2001, 141 (1-3) : 67 - 76
  • [10] Cross-Diffusion Modeling in Macroeconomics
    Balázsi L.
    Kiss K.
    [J]. Differential Equations and Dynamical Systems, 2015, 23 (2) : 147 - 166