Semi-orthogonal decompositions of GIT quotient stacks

被引:0
|
作者
Špela Špenko
Michel Van den Bergh
机构
[1] Vrije Universiteit Brussel,Departement Wiskunde
[2] Universiteit Hasselt,Departement WNI
来源
Selecta Mathematica | 2021年 / 27卷
关键词
Non-commutative resolutions; Geometric invariant theory; Semi-orthogonal decomposition; 13A50; 14L24; 16E35;
D O I
暂无
中图分类号
学科分类号
摘要
If G is a reductive group acting on a linearized smooth scheme X then we show that under suitable standard conditions the derived category D(Xss/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X^{ss}{/}G)$$\end{document} of the corresponding GIT quotient stack Xss/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/}G$$\end{document} has a semi-orthogonal decomposition consisting of derived categories of coherent sheaves of rings on Xss//G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/\!\!/}G$$\end{document} which are locally of finite global dimension. One of the components of the decomposition is a certain non-commutative resolution of Xss//G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/\!\!/}G$$\end{document} constructed earlier by the authors. As a concrete example we obtain in the case of odd Pfaffians a semi-orthogonal decomposition of the corresponding quotient stack in which all the parts are certain specific non-commutative crepant resolutions of Pfaffians of lower or equal rank which had also been constructed earlier by the authors. In particular this semi-orthogonal decomposition cannot be refined further since its parts are Calabi–Yau. The results in this paper complement results by Halpern–Leistner, Ballard–Favero–Katzarkov and Donovan–Segal that assert the existence of a semi-orthogonal decomposition of D(X/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X/G)$$\end{document} in which one of the parts is D(Xss/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X^{ss}/G)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA
    Liu, Zhanwei
    Hu, Guoen
    Wu, Guochang
    Jiang, Bin
    CHAOS SOLITONS & FRACTALS, 2008, 38 (05) : 1449 - 1456
  • [42] Semi-orthogonal frame wavelets and frame multi-resolution analyses
    Kim, HO
    Kim, RY
    Lim, JK
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (01) : 35 - 44
  • [43] A Semi-Orthogonal Distributed Alamouti Space-Time Codes Design
    Xiao-Ya Li
    Wei Liu
    Jian-Dong Li
    Peng-Yu Huang
    Wireless Personal Communications, 2013, 72 : 2803 - 2821
  • [44] Isometries of semi-orthogonal forms on a Z-module of rank 3
    Kuleshov, S. A.
    IZVESTIYA MATHEMATICS, 2013, 77 (01) : 44 - 86
  • [45] Power Allocation for Distributed Estimation in Sensor Networks with Semi-Orthogonal MAC
    Su, Jian
    Nguyen, Ha H.
    Tuan, Hoang D.
    2015 IEEE 14TH CANADIAN WORKSHOP ON INFORMATION THEORY (CWIT), 2015, : 151 - 155
  • [46] A characterization of dimension functions of a class of semi-orthogonal Parseval frame wavelets
    Li, Yun-Zhang
    Lan, Nan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (04) : 751 - 764
  • [47] Eigenmode Transmission for the MIMO Broadcast Channel with Semi-Orthogonal User Selection
    Sun, Liang
    McKay, Matthew R.
    GLOBECOM 2009 - 2009 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-8, 2009, : 2212 - 2217
  • [48] Current distribution on a scatterer obtained by integral equations with semi-orthogonal and orthogonal wavelet basis sets
    Nevels, RD
    Goswami, JC
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - 1996 DIGEST, VOLS 1-3, 1996, : 340 - 343
  • [49] Numerical solution of the controlled Duffing oscillator by semi-orthogonal spline wavelets
    Lakestani, M.
    Razzaghi, M.
    Dehghan, M.
    PHYSICA SCRIPTA, 2006, 74 (03) : 362 - 366
  • [50] A Semi-Orthogonal Distributed Alamouti Space-Time Codes Design
    Li, Xiao-Ya
    Liu, Wei
    Li, Jian-Dong
    Huang, Peng-Yu
    WIRELESS PERSONAL COMMUNICATIONS, 2013, 72 (04) : 2803 - 2821