Semi-orthogonal decompositions of GIT quotient stacks

被引:0
|
作者
Špela Špenko
Michel Van den Bergh
机构
[1] Vrije Universiteit Brussel,Departement Wiskunde
[2] Universiteit Hasselt,Departement WNI
来源
Selecta Mathematica | 2021年 / 27卷
关键词
Non-commutative resolutions; Geometric invariant theory; Semi-orthogonal decomposition; 13A50; 14L24; 16E35;
D O I
暂无
中图分类号
学科分类号
摘要
If G is a reductive group acting on a linearized smooth scheme X then we show that under suitable standard conditions the derived category D(Xss/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X^{ss}{/}G)$$\end{document} of the corresponding GIT quotient stack Xss/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/}G$$\end{document} has a semi-orthogonal decomposition consisting of derived categories of coherent sheaves of rings on Xss//G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/\!\!/}G$$\end{document} which are locally of finite global dimension. One of the components of the decomposition is a certain non-commutative resolution of Xss//G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/\!\!/}G$$\end{document} constructed earlier by the authors. As a concrete example we obtain in the case of odd Pfaffians a semi-orthogonal decomposition of the corresponding quotient stack in which all the parts are certain specific non-commutative crepant resolutions of Pfaffians of lower or equal rank which had also been constructed earlier by the authors. In particular this semi-orthogonal decomposition cannot be refined further since its parts are Calabi–Yau. The results in this paper complement results by Halpern–Leistner, Ballard–Favero–Katzarkov and Donovan–Segal that assert the existence of a semi-orthogonal decomposition of D(X/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X/G)$$\end{document} in which one of the parts is D(Xss/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X^{ss}/G)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Semi-orthogonal spline-wavelets with derivatives and the algorithm with splitting
    Shumilov B.M.
    Numerical Analysis and Applications, 2017, 10 (1) : 90 - 100
  • [32] Semi-orthogonal decomposition of symmetric products of curves and canonical system
    Biswas, Indranil
    Gomez, Tomas L.
    Lee, Kyoung-Seog
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (05) : 1885 - 1896
  • [33] PERFORMANCE OF SEMI-ORTHOGONAL USER SELECTION FOR MULTIUSER MISO SYSTEMS
    Le Ruyet, Didier
    Khanfir, Haier
    Oezbek, Berna
    2008 IEEE 9TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2008, : 321 - +
  • [34] Distributed estimation in wireless sensor networks with semi-orthogonal MAC
    Jian Su
    Ha H. Nguyen
    EURASIP Journal on Wireless Communications and Networking, 2016
  • [35] Semi-orthogonal Parseval frame wavelets and generalized multiresolution analyses
    Bakic, Damir
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (03) : 281 - 304
  • [36] Expeditious oligosaccharide synthesis via selective, semi-orthogonal, and orthogonal activation onhogonall activation
    Kaeothip, Sophon
    Demchenko, Alexei V.
    CARBOHYDRATE RESEARCH, 2011, 346 (12) : 1371 - 1388
  • [37] Semi-orthogonal Precoder Design with Vector Quantized Channel Information Feedback
    Shao Yubin
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 6, 2008, : 265 - 269
  • [38] A note on semi-orthogonal (G-matrix) and semi-involutory MDS matrices
    Chatterjee, Tapas
    Laha, Ayantika
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 92
  • [39] Construction of semi-orthogonal wavelet frames on locally compact abelian groups
    Satyapriya, Raj
    Kumar, Raj
    Shah, Firdous A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025, 204 (01) : 387 - 406
  • [40] Performance Evaluation of a New Semi-Orthogonal Spreading Code in an AWGN Channel
    Hazari, Arnab Shashi
    Kundu, Simita
    Chandra, Abhijit
    2012 5TH INTERNATIONAL CONFERENCE ON COMPUTERS AND DEVICES FOR COMMUNICATION (CODEC), 2012,