Semi-orthogonal decompositions of GIT quotient stacks

被引:0
|
作者
Špela Špenko
Michel Van den Bergh
机构
[1] Vrije Universiteit Brussel,Departement Wiskunde
[2] Universiteit Hasselt,Departement WNI
来源
Selecta Mathematica | 2021年 / 27卷
关键词
Non-commutative resolutions; Geometric invariant theory; Semi-orthogonal decomposition; 13A50; 14L24; 16E35;
D O I
暂无
中图分类号
学科分类号
摘要
If G is a reductive group acting on a linearized smooth scheme X then we show that under suitable standard conditions the derived category D(Xss/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X^{ss}{/}G)$$\end{document} of the corresponding GIT quotient stack Xss/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/}G$$\end{document} has a semi-orthogonal decomposition consisting of derived categories of coherent sheaves of rings on Xss//G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/\!\!/}G$$\end{document} which are locally of finite global dimension. One of the components of the decomposition is a certain non-commutative resolution of Xss//G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/\!\!/}G$$\end{document} constructed earlier by the authors. As a concrete example we obtain in the case of odd Pfaffians a semi-orthogonal decomposition of the corresponding quotient stack in which all the parts are certain specific non-commutative crepant resolutions of Pfaffians of lower or equal rank which had also been constructed earlier by the authors. In particular this semi-orthogonal decomposition cannot be refined further since its parts are Calabi–Yau. The results in this paper complement results by Halpern–Leistner, Ballard–Favero–Katzarkov and Donovan–Segal that assert the existence of a semi-orthogonal decomposition of D(X/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X/G)$$\end{document} in which one of the parts is D(Xss/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X^{ss}/G)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] On semi-orthogonal matrices with row vectors of equal lengths
    Leppala, Kalle
    ANNALES FENNICI MATHEMATICI, 2024, 49 (02): : 621 - 629
  • [22] The dynamic threshold of semi-orthogonal associative memory model
    Huang, XM
    Miyazaki, Y
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 710 - 715
  • [23] The Properties of Multidimensional Semi-orthogonal Frame Wavelet Packets
    Chen, Qingjiang
    Wang, Yuying
    ADVANCED MEASUREMENT AND TEST, PARTS 1 AND 2, 2010, 439-440 : 896 - 901
  • [24] On semi-orthogonal wavelet bases of periodic splines and their duals
    Lin, W
    Liu, MS
    DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 1996, 176 : 503 - 520
  • [25] On the Performance of Semi-Orthogonal User Selection with Limited Feedback
    Ni, Wei
    Chen, Zhuo
    Suzuki, Hajime
    Collings, Iain B.
    IEEE COMMUNICATIONS LETTERS, 2011, 15 (12) : 1359 - 1361
  • [26] Semi-orthogonal versus orthogonal wavelet basis sets for solving integral equations
    Nevels, RD
    Goswami, JC
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (09) : 1332 - 1339
  • [27] Distributed estimation in wireless sensor networks with semi-orthogonal MAC
    Su, Jian
    Nguyen, Ha H.
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2016,
  • [28] On the Selection of Semi-Orthogonal Users for Zero-Forcing Beamforming
    Tomasoni, Alessandro
    Caire, Giuseppe
    Ferrari, Marco
    Bellini, Sandro
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1100 - +
  • [29] Semi-orthogonal user selection for MISO systems with quantized feedback
    Khanfir, Hajer
    Le Ruyet, Didier
    Ozbek, Berna
    2008 INTERNATIONAL ITG WORKSHOP ON SMART ANTENNAS, 2008, : 169 - +
  • [30] Generalized Semi-Orthogonal Multiple-Access for Massive MIMO
    Khormuji, Majid Nasiri
    2015 IEEE 81ST VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2015,