Semi-orthogonal decompositions of GIT quotient stacks

被引:0
|
作者
Špela Špenko
Michel Van den Bergh
机构
[1] Vrije Universiteit Brussel,Departement Wiskunde
[2] Universiteit Hasselt,Departement WNI
来源
Selecta Mathematica | 2021年 / 27卷
关键词
Non-commutative resolutions; Geometric invariant theory; Semi-orthogonal decomposition; 13A50; 14L24; 16E35;
D O I
暂无
中图分类号
学科分类号
摘要
If G is a reductive group acting on a linearized smooth scheme X then we show that under suitable standard conditions the derived category D(Xss/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X^{ss}{/}G)$$\end{document} of the corresponding GIT quotient stack Xss/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/}G$$\end{document} has a semi-orthogonal decomposition consisting of derived categories of coherent sheaves of rings on Xss//G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/\!\!/}G$$\end{document} which are locally of finite global dimension. One of the components of the decomposition is a certain non-commutative resolution of Xss//G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{ss}{/\!\!/}G$$\end{document} constructed earlier by the authors. As a concrete example we obtain in the case of odd Pfaffians a semi-orthogonal decomposition of the corresponding quotient stack in which all the parts are certain specific non-commutative crepant resolutions of Pfaffians of lower or equal rank which had also been constructed earlier by the authors. In particular this semi-orthogonal decomposition cannot be refined further since its parts are Calabi–Yau. The results in this paper complement results by Halpern–Leistner, Ballard–Favero–Katzarkov and Donovan–Segal that assert the existence of a semi-orthogonal decomposition of D(X/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X/G)$$\end{document} in which one of the parts is D(Xss/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {D}}}}(X^{ss}/G)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Semi-orthogonal decompositions of GIT quotient stacks
    Spenko, Spela
    Van den Bergh, Michel
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [2] Discriminants and Semi-orthogonal Decompositions
    Kite, Alex
    Segal, Ed
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 390 (02) : 907 - 931
  • [3] Discriminants and Semi-orthogonal Decompositions
    Alex Kite
    Ed Segal
    Communications in Mathematical Physics, 2022, 390 : 907 - 931
  • [4] Gluing semi-orthogonal decompositions
    Scherotzke, Sarah
    Sibilla, Nicolo
    Talpo, Mattia
    JOURNAL OF ALGEBRA, 2020, 559 : 1 - 32
  • [5] Conservative descent for semi-orthogonal decompositions
    Bergh, Daniel
    Schnuerer, Olaf M.
    ADVANCES IN MATHEMATICS, 2020, 360
  • [6] Producing new semi-orthogonal decompositions in arithmetic geometry
    Bondarko, M. V.
    SBORNIK MATHEMATICS, 2024, 215 (04)
  • [7] Matrix factorizations and semi-orthogonal decompositions for blowing-ups
    Lunts, Valery A.
    Schnuerer, Olaf M.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2016, 10 (03) : 907 - 979
  • [8] PARABOLIC SEMI-ORTHOGONAL DECOMPOSITIONS AND KUMMER FLAT INVARIANTS OF LOG SCHEMES
    Scherotzke, Sarah
    Sibilla, Nicolo
    Talpo, Mattia
    DOCUMENTA MATHEMATICA, 2020, 25 : 955 - 1009
  • [9] FROM SEMI-ORTHOGONAL DECOMPOSITIONS TO POLARIZED INTERMEDIATE JACOBIANS VIA JACOBIANS OF NONCOMMUTATIVE MOTIVES
    Bernardara, Marcello
    Tabuada, Goncalo
    MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (02) : 205 - 235
  • [10] SYMMETRICAL SPACES OF SEMI-ORTHOGONAL GROUPS
    GRECU, E
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (02): : 147 - 158