Edge ideals with almost maximal finite index and their powers

被引:0
|
作者
Mina Bigdeli
机构
[1] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
关键词
Edge ideal; Graph; Index; Linear resolution; Projective dimension; Regularity; Primary 13D02; 13C13; Secondary 05E40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
A graded ideal I in K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}[x_1,\ldots ,x_n]$$\end{document}, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document} is a field, is said to have almost maximal finite index if its minimal free resolution is linear up to the homological degree pd(I)-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-2$$\end{document}, while it is not linear at the homological degree pd(I)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-1$$\end{document}, where pd(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)$$\end{document} denotes the projective dimension of I. In this paper, we classify the graphs whose edge ideals have this property. This in particular shows that for edge ideals the property of having almost maximal finite index does not depend on the characteristic of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}. We also compute the nonlinear Betti numbers of these ideals. Finally, we show that for the edge ideal I of a graph G with almost maximal finite index, the ideal Is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^s$$\end{document} has a linear resolution for s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document} if and only if the complementary graph G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{G}$$\end{document} does not contain induced cycles of length 4.
引用
收藏
页码:947 / 978
页数:31
相关论文
共 50 条
  • [21] Maximal Generating Degrees of Powers of Homogeneous Ideals
    Le Tuan Hoa
    ACTA MATHEMATICA VIETNAMICA, 2022, 47 (01) : 19 - 37
  • [22] Associated primes of powers of edge ideals
    Martinez-Bernal, Jose
    Morey, Susan
    Villarreal, Rafael H.
    COLLECTANEA MATHEMATICA, 2012, 63 (03) : 361 - 374
  • [23] A Bound for the Regularity of Powers of Edge Ideals
    Norouzi, Pooran
    Tehranian, Aboulfazl
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03) : 605 - 609
  • [24] Associated primes of powers of edge ideals
    José Martínez-Bernal
    Susan Morey
    Rafael H. Villarreal
    Collectanea Mathematica, 2012, 63 : 361 - 374
  • [25] Invariants of the symbolic powers of edge ideals
    Chakraborty, Bidwan
    Mandal, Mousumi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (10)
  • [26] Irreducible decomposition of powers of edge ideals
    Morales, Marcel
    Nguyen Thi Dung
    JOURNAL OF ALGEBRA, 2020, 556 : 315 - 339
  • [27] Powers of edge ideals with linear resolutions
    Erey, Nursel
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (09) : 4007 - 4020
  • [28] A Bound for the Regularity of Powers of Edge Ideals
    Pooran Norouzi
    Aboulfazl Tehranian
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 605 - 609
  • [29] Matchings and squarefree powers of edge ideals
    Erey, Nursel
    Herzog, Juergen
    Hibi, Takayuki
    Madani, Sara Saeedi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 188
  • [30] On the Stanley depth of powers of edge ideals
    Fakhari, S. A. Seyed
    JOURNAL OF ALGEBRA, 2017, 489 : 463 - 474