Edge ideals with almost maximal finite index and their powers

被引:0
|
作者
Mina Bigdeli
机构
[1] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
关键词
Edge ideal; Graph; Index; Linear resolution; Projective dimension; Regularity; Primary 13D02; 13C13; Secondary 05E40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
A graded ideal I in K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}[x_1,\ldots ,x_n]$$\end{document}, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document} is a field, is said to have almost maximal finite index if its minimal free resolution is linear up to the homological degree pd(I)-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-2$$\end{document}, while it is not linear at the homological degree pd(I)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-1$$\end{document}, where pd(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)$$\end{document} denotes the projective dimension of I. In this paper, we classify the graphs whose edge ideals have this property. This in particular shows that for edge ideals the property of having almost maximal finite index does not depend on the characteristic of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}. We also compute the nonlinear Betti numbers of these ideals. Finally, we show that for the edge ideal I of a graph G with almost maximal finite index, the ideal Is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^s$$\end{document} has a linear resolution for s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document} if and only if the complementary graph G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{G}$$\end{document} does not contain induced cycles of length 4.
引用
收藏
页码:947 / 978
页数:31
相关论文
共 50 条
  • [31] Buchsbaumness of the second powers of edge ideals
    Do Trong Hoang
    Tran Nam Trung
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (06)
  • [32] Symbolic powers of edge ideals of graphs
    Gu, Yan
    Ha, Huy Tai
    O'Rourke, Jonathan L.
    Skelton, Joseph W.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3743 - 3760
  • [33] Regularity of symbolic powers of edge ideals
    Jayanthan, A., V
    Kumar, Rajiv
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (07)
  • [34] The powers of unmixed bipartite edge ideals
    Banerjee, Arindam
    Mukundan, Vivek
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (11)
  • [35] Stability of depths of powers of edge ideals
    Tran Nam Trung
    JOURNAL OF ALGEBRA, 2016, 452 : 157 - 187
  • [36] Squarefree powers of edge ideals of forests
    Erey, Nursel
    Hibi, Takayuki
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [37] The regularity of almost all edge ideals
    Engstrom, Alexander
    Orlich, Milo
    ADVANCES IN MATHEMATICS, 2023, 435
  • [38] Regularity of powers of (parity) binomial edge ideals
    Shen, Yi-Huang
    Zhu, Guangjun
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (01) : 75 - 100
  • [39] AN UPPER BOUND FOR THE REGULARITY OF POWERS OF EDGE IDEALS
    Herzog, Jurgen
    Hibi, Takayuki
    MATHEMATICA SCANDINAVICA, 2020, 126 (02) : 165 - 169
  • [40] INTEGRAL CLOSURE OF POWERS OF GENERALIZED EDGE IDEALS
    Haqe, Sirajul
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2023, 60 (2-3) : 159 - 174