A Bound for the Regularity of Powers of Edge Ideals

被引:0
|
作者
Pooran Norouzi
Aboulfazl Tehranian
机构
[1] Science and Research Branch Islamic Azad University (IAU),
关键词
Castelnuovo–Mumford Regularity; Co-chordal number; Edge ideal; Primary 13D02; Secondary 13F20; 13C14;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph which has no odd cycle of length at most 2k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k-1$$\end{document} (k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}). Assume that I(G) is the edge ideal of G. We prove reg(I(G)s)≤2s+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{reg}(I(G)^s) \le 2s+$$\end{document}co-chord(G)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G)-1 $$\end{document}, for every integer s with 1≤s≤k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le s\le k-1$$\end{document}. Moreover, we show that if G has no odd cycle of lengths 3 and 5, then I(G) has a linear presentation if and only if Gc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^c$$\end{document} is a chordal graph.
引用
收藏
页码:605 / 609
页数:4
相关论文
共 50 条
  • [1] A Bound for the Regularity of Powers of Edge Ideals
    Norouzi, Pooran
    Tehranian, Aboulfazl
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03) : 605 - 609
  • [2] AN UPPER BOUND FOR THE REGULARITY OF POWERS OF EDGE IDEALS
    Herzog, Jurgen
    Hibi, Takayuki
    [J]. MATHEMATICA SCANDINAVICA, 2020, 126 (02) : 165 - 169
  • [3] AN UPPER BOUND FOR THE REGULARITY OF POWERS OF EDGE IDEALS
    Moghimian, M.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06): : 1695 - 1698
  • [4] The regularity of powers of edge ideals
    Arindam Banerjee
    [J]. Journal of Algebraic Combinatorics, 2015, 41 : 303 - 321
  • [5] The regularity of powers of edge ideals
    Banerjee, Arindam
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 303 - 321
  • [6] An upper bound for the regularity of symbolic powers of edge ideals of chordal graphs
    Fakhari, Seyed Amin Seyed
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (02):
  • [7] Regularity of symbolic powers of edge ideals
    Jayanthan, A., V
    Kumar, Rajiv
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (07)
  • [8] Regularity of powers of (parity) binomial edge ideals
    Yi-Huang Shen
    Guangjun Zhu
    [J]. Journal of Algebraic Combinatorics, 2023, 57 : 75 - 100
  • [9] Regularity of powers of (parity) binomial edge ideals
    Shen, Yi-Huang
    Zhu, Guangjun
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (01) : 75 - 100
  • [10] REGULARITY OF POWERS OF EDGE IDEALS OF UNICYCLIC GRAPHS
    Alilooee, Ali
    Beyarslan, Selvi Kara
    Selvaraja, S.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (03) : 699 - 728